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Abstract. For the 53 neutral atoms from He to Xe in
their ground states, the average distances (u),;,, in
position space and (v),, ,, in momentum space between
an electron in a subshell n/ and another electron in a
subshell n'l" are studied, where n and / are the principal
and azimuthal quantum numbers of an atomic subshell,
respectively. Analysis of 1700 subshell pairs shows that
the electron-pair distances (u),, ,, in position space have
an empirical but very accurate linear correlation with a
one-electron quantity U,y = L, +S*/(3L,), where L,
and S, are the larger and smaller of subshell radii (r),,
and (r),,, respectively. The correlation coefficients are
never smaller than 0.999 for the 66 different combina-
tions of two subshells appearing in the 53 atoms. The
same is also true in momentum space, and the electron-
pair momentum distances (v),,,, have an accurate
linear correlation with a one-electron momentum quan-
tity Vawr ELP+S§/(3LP), where L, and S, are the
larger and smaller of average subshell momenta (p),,
and (p), . respectively. Trends in the proportionality
constants between (u),,,, and U,,r and between
(v),; 0y and Vy0p are discussed based on a hydrogenic
model for the subshell radial functions.

Key words: Two-electron intracule density — Electron-
pair distance — Atomic subshell radius — Position space —
Momentum space

1 Introduction

In atoms and atomic ions, the distribution of electrons
around the nucleus is specified (see, e.g., [1, 2]) by the
spherical average p(r) of the spin-reduced one-electron
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density function p(r), where r is the position vector of an
electron and r = |r|. The average electron-nucleus dis-
tance (r) follows immediately from p(r) and character-
izes the motion of electrons in an atomic system.
Correspondingly, the distribution of electron momenta
is determined (see, e.g., [2]) by the spherical average I1(p)
of the spin-reduced one-electron momentum density
function II(p), where p is the momentum vector of
an electron and p = |p|. The average momentum (p)
follows from II(p) and characterizes the electronic
motion from an alternative point of view.

In addition to the knowledge of the motion of a single
electron, that of the relative motion of two electrons is
important for a more profound understanding of the
electronic structure of atoms. The relative motion of a
pair of electrons in position space is described (see, e.g.,
[3-6]) by the intracule density /(u) and its spherical av-
erages h(u), which are the probability density functions
for the relative vector r; —r; and its magnitude |r; — r/|
of any pair of electrons i and j to be u and u, respec-
tively. The corresponding intracule density and spherical
average, I(v) and A(v), are introduced in momentum
space and represent the probability densities for the
relative. momentum vector p; —p; and its magnitude
Ip; — p;| of any pair of electrons i and j to be v and v,
respectively. The average interelectronic distances (u) in
position space and (v) in momentum space are obtained
from the spherically averaged intracule densities /()
and A(v).

Even in atomic systems, the motion of any single
electron around the coordinate origin and the relative
motion of any pair of electrons are essentially different
problems, and the associated one- and two-electron
properties, such as the densities and the average dis-
tances, do not seem to have any definite relation. For the
53 neutral atoms from He to Xe we have recently ex-
amined [7, 8] the average interelectronic distance (u),; of
a pair of electrons in an atomic subshell specified by the
principal » and azimuthal / quantum numbers and
found within the Hartree-Fock framework that (u),, has
an accurate linear correlation with the average one-
electron distance or subshell radius (r),,. The same is
true in momentum space, and the subshell interelec-



40

tronic distance (v),, has been found to be proportional
to the average one-electron momentum (p),, of that
subshell. The proportionality constant in each space
depends on the values of n and /.

In the present paper, we examine the average dis-
tances (u),;,p in position space and (v),, ,, in mo-
mentum space between an electron in a subshell n/ and
another electron in a subshell #'/" within the Hartree-
Fock approximation. The 53 neutral atoms from He to
Xe in their experimental ground states are the subject of
this study, and hence there is a total of 1700 pairs of
subshells n/ and n'l’. Section 2 summarizes the defini-
tions of one- and two-electron density functions, their
subshell decompositions, and the associated average
distances. In Sect. 3 we describe our computational
procedures based on the numerical Hartree-Fock
method. The results are presented and discussed in Sect.
4. From the analysis of the results of 1700 subshell
pairs, it will be found that the electron-pair distances
(u),1,0p In position space have a very accurate linear
correlation with a one-electron quantity Upiwr =
L.+ S?/(3L,), where L, and S, are the larger and
smaller of subshell radii (r),, and (r),,, respectively.
Analogously, the electron-pair momentum distances
(V),,0p have an accurate linear correlation with a
one-electron momentum-space  quantity Viiwr =
L, +S2/(3L ), where L, and S, are the larger and
smallet of average subshell momenta (p),; and (p), .
respectively. Hartree atomic units are used throughout
this paper.

2 Definitions
2.1 One-electron densities and subshell radii
For an N-electron system (N > 1), the spin-reduced one-

electron density p(r) and its spherical average p(r) in
position space are defined [1, 2, 9] by

r)EN/dodxz...dXN|‘P(x,X2,...,xN)|2 , (la)
) = ()" [ a0, pio) (1b)
where r = (r,Q,) with Q, = (0,, ¢,), ¥(x1,...,xy) is the

electronic wave function of the system under consider-
ation, and x; = (r;,0;) is the combined position-spin
coordinate of the electron i.

For a single Slater determinant Hartree-Fock wave
function composed on N orthonormal spin-orbitals
Y;(r)n;(o), Eq. (la) is rewritten as a sum of orbital
contrlbutlons | (x )J%. For atoms and atomic ions, we
can generally assume that the spatial function ,(r) has
the form

l//j(l‘) = an j( )Yl im; (Qr) ) (2>
where ¥,,,(Q) is a spherical harmonic. The one-
electron densities p(r) and p(r) for atoms are

decomposed into contributions from different subshells
specified by a set of the principal » and azimuthal /
quantum numbers.

Zénnjéll |lﬁ (3d)

Z5nn51/|Rn1 W,

(3b)

where J;; denotes the Kronecker delta. The average one-
electron subshell distance (r),, is given by

l') = anl(r)v pnl
nl

I’):anl(l"), pnl
nl

Oh = [ derpu(o) =4z [ drr g o) (30)

The normalization of the subshell densities is

o]

/ drpy(r) = 4 / dr P p,(r) = Nur

0

(3d)

where N,; is the number of electrons in the subshell n/.
The reduced quantity (r),,/N,; is hereafter referred to as
the subshell radius.

If we start from a momentum-space N-electron wave
function ®(y,,...,yy), where y;, = (p;,0;) is the com-
bined momentum-spin coordinate of electron i, an ex-
actly analogous procedure defines the momentum-space
one-electron density I1(p) and its spherical average I1(p).
The Hartree-Fock wave function in momentum space
has exactly the same determinantal structure as that in
position space, provided that the one-electron spatial
function y(r) is replaced with

6,(p) = () / drexp(—ip - () .

For the position-space atomic orbital given by Eq. (2),
the corresponding momentum-space orbital is

()bj(p) = Pnjl,(P)Yl,-m,-(Qp) )
where p = (p,Q,) and

P =2 [ariere .
0

in which j;(x) is the /th order spherical Bessel function of
the first kind. The subshell components IT,,;(p), IT,;(p),
and (p),, in momentum space are obtdlned from
equations analogous to Egs. (3a)—(3c).

(4a)

(4b)

2.2 Intracule densities and intersubshell
electron-pair distances

For an N-electron system (N > 2) the intracule density
I(u) and its spherical average h(u) are defined [3, 4] by

I(u) = /dn dry ou— (r; —rp)|T(ry,12) (5a)

W) = (4n)"! / 40, I(u) | (5b)



where u = (u,Q,) with Q, = (0,, ¢,), o(r) is the three-
dimensional Dirac delta function, and I'(r;,r;) is the
spin-reduced two-electron density function [2, 9],

N
[(r,n) = (2)/6161 doy dxs ... dxy|¥(xi,...,xy) .

(6)

For a single Slater determinant wave function com-

posed of N orthonormal spin-orbitals (r)n;(o),

I'(r;,r;) reduces to a sum of spin-orbital-pair contribu-
tions,

I'(ry,r2) 1ZZij (ri,r) , (7a)
=1 =
Cie(rr,ma) = [, (0) P (1) P = 34/, k)
x [ () (r) [ (1) ()] (7b)

where 04(j, k) is unity if the two spin-orbitals j and &
have the same spin and zero if they have opposite spins.
Accordingly, the intracule densities /(u) and h(u) are
decomposed into spin-orbital-pair components I (u)
and hj(u), respectively. When we use the kernel of three-
dimensional Fourier transformations for the Dirac delta
function,

o(r) = 2n) /ds exp(+ir - s) | (8)

the spin-orbital-pair components /;(u) and hj(u) are
expressed [5, 10] as the Fourier and Hankel transforms
of their characteristic functions Fj(s) and Hj(s),

Lir(u) = (2n)~ /ds exp(+iu - 8)Fj(s) , (9a)
h() = (272) ! / ds % jo(us)Hy(s) | (9b)
where

Fa(s) = FJ(s) — 8,(j,k) ,§f<s> : (9¢)
Hy(s) = H{(s) — 0,(j. O HL(s) (9d)
in which

Fli(s) = F5(8)fm(s), H¥ (s) = (4n) /dQ F¥(s) , (%)
fials) = / drexp(+is - WOV = fi(-s) (9D
and s = (s, Q).

For atomic systems with the spatial function repre-
sented by Eq. (2) we obtain [5, 10]

lj+1k

ful(s) =Van Y

I=|l— 1|

X Yl:kmjfmk (QS) VVljk (S) ’

i'V21+ 1 (j; k)

(10a)

where
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oo

Wii(s) = dr r? ]I(SV)R (r)Ri(r) =
0

and c'(j;k) = c!(I;mj; Iymy) is the Condon-Shortley
parameter [l11]. Note that due to the property of
c'(j; k), the summation in Eq. (10a) is over every other
integer between the speciﬁed values. Based on Eq. (10a),
the angular integration in the function ij( ) is per-
formed analytically [10]. For the two components H/(s)
and H,]:]f( ) appearing in Eq. (9d), we have [5, 10]

Witi(s) (10b)

- min(2/;,21;)
Hijs)= > @I+ 1)a'(ikw),()Wuls) ,  (l1a)
1=0
itk
H(s)= Y QI+ Db (k)| Wi(s) (11b)
I=[l—Ix]
where a'(j;k) = c!(j;j)c! (k;k) and b(j;k) = [¢!(j; k)]

are Condon-Shortely parameters [11]. The summations
in Egs. (11a) and (11b) are over every other integer
between the specified values.

The intersubshell intracule densities 7,/,,(u) and
hniwr(u) are defined by

1 N N
]nl,n’l’(u) = EZ Z 5nn_, 511_/ 5n’nk 5l’lk ]jk(u) ) (12‘1)
1 k=10k2))
1 N N
hnl,n’l’(”) = EZ 511)1_, 511_/ 5n’nk 5hik hjk(u) ) (12b)
=1 k=1(kA)

and the average intersubshell electron-pair distance
<u)n,7n/,, by

<u>n11n11, = /duu ]n/_’,,/l/(ll)
00

=4dr /du u Bty (u)

0

(12¢)

The normalization of the intersubshell intracule densities
is
o0

/dll In/,n’l’ (ll) =4n /du MZ hn/",,/[/(u)

0

ifn=nand [ ="/,

ifntnorl#1 .
(12d)

Note that the intrasubshell densities ,;,,;(w) and A, ,; (u)
are meaningful only when there are two or more
electrons in a subshell n/.

Exactly analogous definitions apply to the momentum-
space intracule I(v) and %(v) densities, their subshell
components, and the intersubshell electron-pair distances
(V) g p» If we start from a momentum-space N-electron
wave function @(yy, .. .,yy), spin-orbitals ¢;(p)n,(c) and
atomic radial functions P, ;,(p).

o an(an_ 1)/27
anNn’/’v
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3 Computational details

Each atomic LS multiplet state is expressed in general by
a linear combination of a finite number of Slater
determinants in the Hartree-Fock theory, where L and
S represent the total orbital and spin angular momentum
quantum numbers, respectively. For the neutral atoms
from He to Xe in their experimental ground states [12],
we have previously confirmed [5] that among
(2L +1)(28 + 1) degenerate states there exists at least
one state with specific z-component M; and Mg values of
L and S that results in a single determinant wave
function to which our mathematical procedure described
in Sect. 2 can be applied.

For these ground multiplet states of the 53 neutral
atoms expressed by single determinant wave functions,
the Hartree-Fock radial functions R;(r) = Ry, (r) in
position space were numerically generdted using an en-
hanced and modified version of the MCHF72 code [13
14]. The spherically averaged one-electron subshell
density p,,(r) and the associated one-electron radius
(r),; in position space were obtained straightforwardly.
To obtain W (s), products R;(r)Ri(r) of two radial
functions were numerically Hankel-transformed using
the algorithm of Talman [15]. Following Eqgs. (9d), (11a)
and (11b), we obtained the intersubshell components
Hywr(s) of the characteristic function H(s) as the se-
lected sum of products of two W (s) with appropriate
coefficients. The Condon-Shortley parameters a’(j; k)
and b'(j;k) were taken from Ref. [16]. An additional
Hankel transformation [cf. Eq. (9b)] of the function
H,wr(s) gave the intersubshell intracule density
Rurwr(u), from which the intersubshell electron-pair
distance (u),; ,» Was obtained.

For the determination of the corresponding one-
electron subshell quantities I1,;(p) and (p),, and the two-
electron intersubshell quantities A,/ (v) and (v}, in
momentum space, the position-space radial functions
R;(r), generated by numerical Hartree-Fock calcula-
tions, were first Hankel-transformed to obtain the mo-
mentum-space  radial  functions  Pi(p) = B, (p)
according to Eq. (4c). The same procedure was then
applied as in position space.

4 Numerical results and discussion

By definition, all one-electron subshell density functions
are normalized to the number of subshell electrons
N,;, while all two-electron intersubshell density func-
tions are normalized to the number of electron pairs
Nuyi(Nyy —1)/2 or NyNypy. Throughout this section,
however, we will use a modified normalization scheme
which normalizes all one-electron subshell and two-
electron intersubshell densities to unity, in order to avoid
large numbers and to facilitate mutual comparison of
the one- and two-electron average distances.

For the Xe atom, Table 1 exempliﬁes the values of the
average intersubshell electron-pair distances (u),;,, in
p051t10n space. Since Xe has 11 subshells, there are 66
pairs of subshells n/ and n'/’, and the data are separated
into four groups according to the values of |n — /| for

our later convenience. In Table 1, we find two trends of
the (u),; ,p values: for given values of n and 1, (u),; .y
increases with increasing n’, but is relatively insensitive
to I'. We know that 51m11ar trends are observed for the
atomic subshell radius (r),,. The result suggests that the
intersubshell electron-pair distances (u),, ,, have some
meaningful correlation with the subshell radii (r),, and
(r),yp or their derivatives.

As a simple model, we consider classically that two
electrons are moving independently on two concentric
spheres with radii »; and r;, respectively. The average
distance U between the two electrons is calculated to
be

1 r
U= —= 13
rs + 3r ( )
where r. = min(r,7,) and r. = max(r;,7,). For an
integer value of &, Sack [17] derived a general formula
for the expansion of 74, in terms of 7y, r2, and 0yy:

My = gu(ri, r2)Pi(cosbr)

=0

(14a)

where P;(x) is the Legendre polynomial and gy (ry,72) is
an analytical function involving a hypergeometric func-
tion. A special case of Eq. (14a) for k =1 is

00 1 1+2 1 }’1
ra = ;(MF—ﬁ—>PI(005912) . (14b)

U is identical to the leading term of Eq. (14b). When the
expectation value of Eq. (14b) is examined over two
spin-orbitals, however, we cannot obtain any relation
between (u),,; ,, and one-electron quantities because the
radial integrands include r~ and r.. We then introduce a
one-electron quantity U, defined by
152

L.+ 3L,

as a quantum-mechanical analog of Eq. (13), where
S, = min((r),;, (r),») and L, = max((r),;, (r),,,). For the
particular case of n = n’ and [ = I, Eq. (15a) reduces to

Unint = 3P0t (15b)

and the quantity U, is able to correctly predict
accurate linear correlations reported [8] between (u),,;
and (r),,. In Table 1 the U, values for the Xe atom
are summarized and compared with the (u),, ., values.
When the U, »r values are used to estimate the electron-
pair distances (u),, ;. the relative errors A range from
0.0 to 12.2% and the heuristic one-electron quantity
U,r 1s seen to be a satisfactory approximation to the
two-electron property (u),, . . An interesting point is
that the errors A are highly dependent on the |n — #/|
values. For |n — n/| = 0 the relative error is 4.4-12.2%,
but for |n — n'| =1, 2, 3 and 4 the errors are only about
2, 0.3, 0.04, and 0.00%, respectively. Namely, the
accuracy of the approximation (u),,; ., = U, »r increas-
es as the difference between two subshell radii increases.

Stimulated by these results, we have examined pos-
sible correlations between <u>nln’l’ and Uy, based on
the numerical Hartree-Fock data for the 1700 subshell

Unl,n’l’ (153)
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Table 1. Intersubshell electron-pair distances (u),, ,»» and one-electron subshell quantities U, in position space for the Xe atom

|n—n’| nl n'l (U v Unir A |n—n’| nl n'l () v Ui wr A
0 1s 1s 0.041064 0.037521 8.63 1 3d 4p 0.825805 0.810736 1.82
2s 2s 0.170717 0.161164 5.60 ad 0.915303 0.900546 1.61
2p 0.170682 0.150176 12.01 4s 5s 2.109903 2.074419 1.68
2p 2p 0.147671 0.137443 6.93 S5p 2.446091 2417173 1.18
3s 3s 0.446727 0.424928 4.88 4p Ss 2.120872 2.082554 1.81
3p 0.477162 0.418838 12.22 S5p 2.456741 2.424065 1.33
3d 0.425712 0.400892 5.83 4d 5s 2.155927 2.108454 2.20
3p 3p 0439137  0.412567 6.05 5p 2491006 2446010  1.81
3d 0.428556 0.394084 8.04
3d 3d 0.396587 0.373778 5.75 2 1s 3s 0.320248 0.319524 0.23
4s 4s 1.040168 0.993690 4.47 3p 0.311137 0.310279 0.28
4p 1.152916 1.015293 11.94 3d 0.281856 0.281275 0.21
ad 1.146506 1.083147 5.53 2s 4ds 0.755214 0.751802 0.45
4p 4p 1.095921 1.036031 5.46 4p 0.786732 0.783291 0.44
4d 1.196345 1.101659 7.91 4d 0.879104 0.876046 0.35
4d 4d 1.229494 1.160602 5.60 2p 4s 0.752679 0.750020 0.35
5s 5s 2.762986 2.641278 4.40 4p 0.784303 0.781582 0.35
Sp 3.266537 2.897469 11.30 ad 0.877130 0.874520 0.30
S5p S5p 3.298940 3.117312 5.51 3s S5s 2.005104 1.998049 0.35
S5p 2.358555 2.352465 0.26
1 s 2s 0.125051 0.123057 1.59 3p 5s 2.003907 1.997070 0.34
2p 0.108449 0.105643 2.59 5p 2.357645 2.351635 0.25
2s 3s 0.342141 0.333977 2.39 3d S5s 2.000094 1.994183 0.30
3p 0.333816 0.325165 2.59 S5p 2.354398 2.349189 0.22
3d 0.305377 0.297706 2.51
2p 3s 0.335770 0.329810 1.77 3 s 4s 0.745908 0.745622 0.04
3p 0.327557 0.320872 2.04 4p 0.777664 0.777363 0.04
3d 0.300707 0.292968 2.57 ad 0.870984 0.870755 0.03
3s 45 0.810180 0.790695 2.40 2s 5s 1.984590 1.983417 0.06
4p 0.838513 0.820594 2.14 S5p 2.341090 2.340067 0.04
ad 0.925778 0.909346 1.77 2p Ss 1.983683 1.982747 0.05
3p 4s 0.805791 0.788091 2.20 S5p 2.340319 2.339499 0.04
4p 0.835756 0.818096 2.11
4d 0.923889 0.907116 1.82 4 s 5s 1.981186 1.981092 0.00
3d 4s 0.795181 0.780417 1.86 S5p 2.338180 2.338097 0.00

pairs of the 53 atoms. We have found that there is good
linear correlation between the two-electron property
(u),1,»p and the one-electron property Uy of the 53
atoms if the data are classified according to subshell
pairs specified by the nl and »'l’ values. Table 2 sum-
marizes the correlation coefficients (CCs) between
<”>n1,n'1' and U, wr, together with the values of the
parameter a,;yp appearing in the least square linear
approximation,

(16)

In Table 2 we find that excellent correlations with
CC>0.9999 exist between (u),;,, and Uy ,p for all
subshell pairs with two exceptions, i.e. the 5p-5p and 4d-
Ss pairs, where CC = 0.99985 and 0.99975, respectively.
The CCs in Table 2 show a tendency to approach unity
(i.e. perfect linearity) as |n — | increases and we have
CC=1.000000 for all subshell pairs with |n —n'| > 1.
Figure 1 depicts examples of the linear correlation for a
few selected subshell pairs. In Table 2 the proportion-
ality constants a,, .y are distributed between 1.00 and
1.15 and do not differ much from one subshell pair to
another. Moreover, the a,;,,» values tend to approach
unity as |n — #’| increases, as anticipated from the results
for Xe in Table 1. It may be interesting to find the
presence of an approximate but accurate linear relation

<u>nl,n’l’ = anl,n’l’Unl,n’]’ .

between the one-electron subshell property U, ,» and
the average electron-electron distance (u),,,,,. When the
(u) . v values are estimated from the U, »r values based
on the regression line, Eq. (16), with the a,;,,; values in
Table 2, the average relative error A, for each subshell
pair is largest for the 3d-3d pair with 1.31% among the
66 pairs. In most cases A,, is smaller than 0.5%, as
shown in Table 2. Linear correlation between (u),; .
and U,;,»r is concluded to be highly accurate though not
rigorous.

The linearity observed above depends on the princi-
pal n and azimuthal / quantum numbers of two atomic
subshells. To explain this fact, we have considered a
hydrogenic radial function with an exponent { =Z/n
with Z being nuclear charge,

wttnan [(n = 1= DN
(1" 2(3/2{7“”“)! ]

x (20r)' L2 (28r) exp(—Cr) (17)

where LF(x) is the associated Laguerre polynomial and
the phase factor (—1)""! is included for consistency
through Eq. (4c) with the momentum-space counterpart
which will be introduced later. A pair of hydrogenic
functions, Eq. (17), predicts that the electron-pair
distance (u),,,,, and the one-electron subshell property

Rnl(l”) =

nln
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Uyiwr are proportional, and the proportionality con-
stant is independent of Z but dependent on the four
quantum numbers, electronic configurations, and LS
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Fig. 1. Examples of the linear correlations observed in position
space between (u),; . and U,;yy. Note that all the parent subshell
and intersubshell densities are normalized to unity
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coupling of electrons in relevant subshells. For pairs of
closed ns(2), n'p(6), and n"d(10) subshells with 'S
coupling, we have evaluated the hydrogenic proportion-
ality constants and tabulated them in Table 2. Compar-
ison of the hydrogenic and Hartree-Fock a,;, values in
Table 2 shows that the relative error of hydrogenic
constants is at most 3.5%, and our hydrogenic model
with the correct nodal structure of atomic subshells
appears to explain semiquantitatively the observed linear
correlations between (u),; ,, and Uy vr. However, the
differences between the hydrogenic and Hartree-Fock
constants are larger in general for a pair of outer
subshells than for a pair of inner subshells.

The intersubshell electron-pair distances (v),;,, in
momentum space are summarized in Table 3 for the Xe
atom. We can see from Table 3, that for given values of n
and /, the electron-pair distance (v),,,, decreases as n’
increases. The subshell radius (p),, also decreases with
increasing n in momentum space. The trend is exactly
opposite to that which we have seen in position space
due to the position-momentum reciprocity: an inner
subshell with a tight electron density distribution around
the nucleus (r = 0) in position space has a diffuse density
distribution in momentum space, while an outer subshell
with a diffuse density in position space has a momentum
density condensed around the momentum origin p = 0.

Table 3. Intersubshell electron-pair distances (v),, ,» and one-electron subshell quantities V7 in momentum space for the Xe atom

‘ninl‘ nl n'r <U>nl.n’1/ V;ll-”'l/ A |n7n,‘ nl n't <v>nlAn’1/ an#’l'l/ A
0 s s 66.11437 60.40263 8.64 1 3d 4p 13.06400 12.39158 5.15
2s 2s 25.48414 21.79390 14.48 4d 12.95566 12.43204 4.04
2p 29.46985 26.12674 11.34 4s Ss 4.607850 4.148187 9.98
2p 2p 31.66702 29.46175 6.96 5p 4.494404 4.145602 7.76
3s 3s 13.07947 10.99588 15.93 4p Ss 4.918076 4.558774 7.31
3p 14.22833 12.17728 14.42 5p 4.822722 4.556438 5.52
3d 15.41292 13.75590 10.75 4d Ss 5.002363 4.713644 5.77
3p 3p 14.98250 13.17801 12.04 5p 4.936156 4.711390 4.55
3d 16.12505 14.59117 9.51
3d 3d 16.76650 15.78852 5.83 2 Ls 3s 47.00206 45.80240 2.55
4s 4s 6.407826 5.327632 16.86 3p 47.28941 46.02073 2.68
4p 6.713185 5.624769 16.21 3d 47.07563 46.33371 1.58
4d 6.672113 5.742481 13.93 2s 4s 17.55979 16.67101 5.06
4p 4p 6.829005 5.894636 13.68 4p 17.62701 16.74400 5.01
4d 6.903830 6.002941 13.05 4d 17.47074 16.77332 3.99
4d 4d 6.808747 6.107534 10.30 2p 4s 22.87734 22.33716 2.36
Ss Ss 2.183669 1.802514 17.45 4p 22.88726 22.39116 2.17
5p 2.179716 1.794875 17.66 4d 22.80214 22.41284 1.71
5p 5p 2.064398 1.787172 13.43 3s Ss 8.616127 8.320777 3.43
5p 8.551507 8.319525 2.71
1 s 2s 50.99083 47.26784 7.30 3p Ss 10.15942 9.945147 2.11
2p 53.09924 48.89451 7.92 5p 10.10377 9.944102 1.58
2s 3s 20.25446 17.73238 12.45 3d Ss 12.04390 11.89284 1.25
3p 20.97990 18.33749 12.59 5p 12.00500 11.89196 0.94
3d 21.32249 19.20491 9.93
2p 3s 24.71897 23.12230 6.46 3 s 4s 45.79215 45.41945 0.81
3p 25.04899 23.56992 5.90 4p 45.81194 45.44579 0.80
3d 25.56132 24.21157 5.28 4d 45.68556 45.45636 0.50
3s 4s 10.23216 8.892232 13.10 2s Ss 16.55917 16.38269 1.07
4p 10.30719 9.036902 12.32 5p 16.51929 16.38206 0.83
4d 10.14104 9.094997 10.31 2p Ss 22.22607 22.12388 0.46
3p 4s 11.43623 10.42198 8.87 5p 22.19816 22.12341 0.34
4p 11.46822 10.54269 8.07
4d 11.38155 10.59116 6.94 4 Ls Ss 45.38140 45.31542 0.1
3d 4s 13.00129 12.29082 5.46 5p 45.36546 45.31519 0.11
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Since our classical model of two independent electrons
moving on two concentric momentum spheres results in
an expression isomorphic to Eq. (13) for the electron-
pair momentum distance ¥, we introduce a momentum-
space one-electron quantity ¥,y defined by

v, =L, 152 18
nlp'll = + §L_ ) ( )
where P - mln(<p>nl7 <p>n’l/) and LP = max(<p>nlv

(p)yy)- When n=n" and [ =1/, Eq. (18) simplifies to
Vitm = (4/3)(p),, and V., explains the linearity
found previously [8] between (v),;,, and (p),;. In Table
3 the values of V},;,,y for the Xe atom are shown and
compared them with the corresponding (v )0y Values.
When V,; sy is employed as an approximation for
(0),.r~ the relative errors A range from 0.1 to 16.9%.
The errors tend to decrease as |n — /| increases as they
do in position space. Though the accuracy is slightly
poorer than that in position space, the one-electron
subshell quantity ¥, can be used to estimate the
electron-pair momentum distance (v),; -

We have examined correlations between (v),,,,, and
Varwr for the 1700 subshell palrs of the 53 neutral atoms.
The results are summarized in Table 4, where by p 1s
the parameter appearing in the least square linear fitting,

<U>n[1n/l/ >~ bnl,n’l’ an,n’l’ . (19)

An excellent linear correlation is seen in Table 4, as was
in position space. All the CCs between (v),; ., and V. vr
are larger than 0.9999, but we have eight exceptions
when 4s or Ss subshells participate. Thus, the two-
electron (v),, ,, and one-electron ¥,y properties are
essentlally proportional. The proportlonahty constants
by v in Table 4 range from 1.00 to 1.21 and show a
tendency to approach unity with increasing |n — n'|.
When Eq. (19) is employed to approximate (v)n,n,,,
based on V;; .y, the average relative error A,y is largest
(3.30%) for the 3s-4s subshell pair, but does not exceed
1% for many subshell pairs. The linear correlations
observed in momentum space are illustrated in Fig. 2 for
a few selected subshell pairs.

When momentum-space hydrogenic radial functions,

2n(n—1— 1)!] 1/2

Pu(p) = <—i>’2’”c5/zz![ T

2p) 22
X%CE“Q%Z) ’ @0

with Ck(x) being the Gegenbauer polynomial and
{ =Z/n, are assumed for two closed subshells n/ and
n'l', we find that the quantities (v),;,, and V,,r are
precisely proportional independent of Z. The hydrogemc
proportionality constants b, are summarized in Table
4. When the two sets of proportionality constants in
Table 4 are compared, we find that the Hartree-Fock
results are approximately explained by the hydrogenic
model. However, the difference between the correspond-
ing two values is not small when outer subshells are
concerned and the maximum relative error of the
hydrogenic result amounts to 12.8% for the 3s-5p
subshell pair.
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Fig. 2. Examples of the linear correlations observed in momentum
space between (), and V. Note that all the parent subshell
and intersubshell densities are normalized to unity

5 Summary

We have studied the average distances (u),,, in
position space and (v),,,,» in momentum space between
an electron in a subshell n/ and another electron in a
subshell #'l’ of ground-state atoms. Analysis of 1700
subshell pairs of the 53 neutral atoms from He to Xe has
shown that the electron-pair distances (u), ,, in posi-
tion space have an accurate linear correlation with a
one-electron quantity Uy ypr =L, + Sr2 /(3L,), where L,
and S, are the larger and smaller of subshell radii (r),,
and (r),.,, respectively. The correlation coefficients are
greater than 0.9999 for 64 subshell pairs among a total
of 66 pairs appearing in the 53 atoms. The momentum-
space electron-pair distances (v),;,, also have an
accurate linear correlation with a one-electron momen-
tum quantity V,;,» =L, +S2/ (3L,), where L, and S, are
the larger and smaller of average subshell momenta <p>n J
and (p),,, respectively. The correlation coefficients are
again larger than 0.9999 for 58 subshell pairs of the total
66 pairs. Trends in the proportionality constants be-
tween (u),; ,» and U,y and between (v),, ., and Vv
can be roughly explamed by assuming hydrogenic radial
functions for the two relevant subshells.
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