
Abstract. For the 53 neutral atoms from He to Xe in
their ground states, the average distances huinl;n0l0 in
position space and hvinl;n0l0 in momentum space between
an electron in a subshell nl and another electron in a
subshell n0l0 are studied, where n and l are the principal
and azimuthal quantum numbers of an atomic subshell,
respectively. Analysis of 1700 subshell pairs shows that
the electron-pair distances huinl;n0l0 in position space have
an empirical but very accurate linear correlation with a
one-electron quantity Unl;n0l0 � Lr � S2

r =�3Lr�, where Lr
and Sr are the larger and smaller of subshell radii hrinl
and hrin0l0 , respectively. The correlation coe�cients are
never smaller than 0.999 for the 66 di�erent combina-
tions of two subshells appearing in the 53 atoms. The
same is also true in momentum space, and the electron-
pair momentum distances hvinl;n0l0 have an accurate
linear correlation with a one-electron momentum quan-
tity Vnl;n0l0 � Lp � S2

p=�3Lp�, where Lp and Sp are the
larger and smaller of average subshell momenta hpinl
and hpin0l0 , respectively. Trends in the proportionality
constants between huinl;n0l0 and Unl;n0l0 and between
hvinl;n0l0 and Vnl;n0l0 are discussed based on a hydrogenic
model for the subshell radial functions.

Key words: Two-electron intracule density ± Electron-
pair distance ± Atomic subshell radius ± Position space ±
Momentum space

1 Introduction

In atoms and atomic ions, the distribution of electrons
around the nucleus is speci®ed (see, e.g., [1, 2]) by the
spherical average q�r� of the spin-reduced one-electron

density function q�r�, where r is the position vector of an
electron and r � jrj. The average electron-nucleus dis-
tance hri follows immediately from q�r� and character-
izes the motion of electrons in an atomic system.
Correspondingly, the distribution of electron momenta
is determined (see, e.g., [2]) by the spherical average P�p�
of the spin-reduced one-electron momentum density
function P�p�, where p is the momentum vector of
an electron and p � jpj. The average momentum h pi
follows from P�p� and characterizes the electronic
motion from an alternative point of view.

In addition to the knowledge of the motion of a single
electron, that of the relative motion of two electrons is
important for a more profound understanding of the
electronic structure of atoms. The relative motion of a
pair of electrons in position space is described (see, e.g.,
[3±6]) by the intracule density I�u� and its spherical av-
erages h�u�, which are the probability density functions
for the relative vector ri ÿ rj and its magnitude jri ÿ rjj
of any pair of electrons i and j to be u and u, respec-
tively. The corresponding intracule density and spherical
average, �I�v� and �h�v�, are introduced in momentum
space and represent the probability densities for the
relative momentum vector pi ÿ pj and its magnitude
jpi ÿ pjj of any pair of electrons i and j to be v and v,
respectively. The average interelectronic distances hui in
position space and hvi in momentum space are obtained
from the spherically averaged intracule densities h�u�
and �h�v�.

Even in atomic systems, the motion of any single
electron around the coordinate origin and the relative
motion of any pair of electrons are essentially di�erent
problems, and the associated one- and two-electron
properties, such as the densities and the average dis-
tances, do not seem to have any de®nite relation. For the
53 neutral atoms from He to Xe we have recently ex-
amined [7, 8] the average interelectronic distance huinl of
a pair of electrons in an atomic subshell speci®ed by the
principal n and azimuthal l quantum numbers and
found within the Hartree-Fock framework that huinl has
an accurate linear correlation with the average one-
electron distance or subshell radius hrinl. The same is
true in momentum space, and the subshell interelec-
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tronic distance hvinl has been found to be proportional
to the average one-electron momentum h pinl of that
subshell. The proportionality constant in each space
depends on the values of n and l.

In the present paper, we examine the average dis-
tances huinl;n0l0 in position space and hvinl;n0l0 in mo-
mentum space between an electron in a subshell nl and
another electron in a subshell n0l0 within the Hartree-
Fock approximation. The 53 neutral atoms from He to
Xe in their experimental ground states are the subject of
this study, and hence there is a total of 1700 pairs of
subshells nl and n0l0. Section 2 summarizes the de®ni-
tions of one- and two-electron density functions, their
subshell decompositions, and the associated average
distances. In Sect. 3 we describe our computational
procedures based on the numerical Hartree-Fock
method. The results are presented and discussed in Sect.
4. From the analysis of the results of 1700 subshell
pairs, it will be found that the electron-pair distances
huinl;n0l0 in position space have a very accurate linear
correlation with a one-electron quantity Unl;n0l0 �
Lr � S2

r =�3Lr�, where Lr and Sr are the larger and
smaller of subshell radii hrinl and hrin0l0 , respectively.
Analogously, the electron-pair momentum distances
hvinl;n0l0 have an accurate linear correlation with a
one-electron momentum-space quantity Vnl;n0l0 �
Lp � S2

p=�3Lp�, where Lp and Sp are the larger and
smaller of average subshell momenta hpinl and hpin0l0 ,
respectively. Hartree atomic units are used throughout
this paper.

2 De®nitions

2.1 One-electron densities and subshell radii

For an N -electron system �N � 1�, the spin-reduced one-
electron density q�r� and its spherical average q�r� in
position space are de®ned [1, 2, 9] by

q�r� � N
Z

dr dx2 . . . dxN jW�x; x2; . . . ; xN �j2 ; �1a�

q�r� � �4p�ÿ1
Z

dXr q�r� ; �1b�

where r � �r;Xr� with Xr � �hr;/r�; W�x1; . . . ; xN � is the
electronic wave function of the system under consider-
ation, and xi � �ri; ri� is the combined position-spin
coordinate of the electron i.

For a single Slater determinant Hartree-Fock wave
function composed on N orthonormal spin-orbitals
wj�r�gĵ�r�, Eq. (1a) is rewritten as a sum of orbital
contributions jwj�r�j2. For atoms and atomic ions, we
can generally assume that the spatial function wj�r� has
the form

wj�r� � Rnjlj�r�Yljmj�Xr� ; �2�
where Ylm�X� is a spherical harmonic. The one-
electron densities q�r� and q�r� for atoms are
decomposed into contributions from di�erent subshells
speci®ed by a set of the principal n and azimuthal l
quantum numbers.

q�r� �
X

nl

qnl�r�; qnl�r� �
XN

j�1
dnnjdllj jwj�r�j2 ; �3a�

q�r� �
X

nl

qnl�r�; qnl�r� � �4p�ÿ1
XN

j�1
dnnjdllj jRnjlj�r�j2 ;

�3b�
where dij denotes the Kronecker delta. The average one-
electron subshell distance hrinl is given by

hrinl �
Z

dr rqnl�r� � 4p
Z1
0

dr r3 qnl�r� : �3c�

The normalization of the subshell densities isZ
drqnl�r� � 4p

Z1
0

dr r2qnl�r� � Nnl ; �3d�

where Nnl is the number of electrons in the subshell nl.
The reduced quantity hrinl=Nnl is hereafter referred to as
the subshell radius.

If we start from a momentum-space N -electron wave
function U�y1; . . . ; yN �, where yi � �pi; ri� is the com-
bined momentum-spin coordinate of electron i, an ex-
actly analogous procedure de®nes the momentum-space
one-electron density P�p� and its spherical average P�p�.
The Hartree-Fock wave function in momentum space
has exactly the same determinantal structure as that in
position space, provided that the one-electron spatial
function wj�r� is replaced with

/j�p� � �2p�ÿ3=2
Z

dr exp�ÿip � r�wj�r� : �4a�

For the position-space atomic orbital given by Eq. (2),
the corresponding momentum-space orbital is

/j�p� � Pnjlj�p�Yljmj�Xp� ; �4b�
where p � �p;Xp� and

Pnjlj�p� � �ÿi�lj

���
2

p

r Z1
0

dr r2jlj�pr�Rnjlj�r� ; �4c�

in which jl�x� is the lth order spherical Bessel function of
the ®rst kind. The subshell components Pnl�p�;Pnl�p�,
and hpinl in momentum space are obtained from
equations analogous to Eqs. (3a)±(3c).

2.2 Intracule densities and intersubshell
electron-pair distances

For an N -electron system �N � 2� the intracule density
I�u� and its spherical average h�u� are de®ned [3, 4] by

I�u� �
Z

dr1 dr2 d�uÿ �r1 ÿ r2��C�r1; r2� ; �5a�

h�u� � �4p�ÿ1
Z

dXu I�u� ; �5b�
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where u � �u;Xu� with Xu � �hu;/u�, d�r� is the three-
dimensional Dirac delta function, and C�r1; r2� is the
spin-reduced two-electron density function [2, 9],

C�r1; r2� � N
2

� �Z
dr1 dr2 dx3 . . . dxN jW�x1; . . . ; xN �j2 :

�6�
For a single Slater determinant wave function com-

posed of N orthonormal spin-orbitals wj�r�gj�r�;
C�r1; r2� reduces to a sum of spin-orbital-pair contribu-
tions,

C�r1; r2� � 1

2

XN

j�1

XN

k�1
Cjk�r1; r2� ; �7a�

Cjk�r1; r2� � jwj�r1�j2jwk�r2�j2 ÿ ds�j; k�

� �w�j �r1�wk�r1���w�k�r2�wj�r2�� ; �7b�
where ds�j; k� is unity if the two spin-orbitals j and k
have the same spin and zero if they have opposite spins.
Accordingly, the intracule densities I�u� and h�u� are
decomposed into spin-orbital-pair components Ijk�u�
and hjk�u�, respectively. When we use the kernel of three-
dimensional Fourier transformations for the Dirac delta
function,

d�r� � �2p�ÿ3
Z

ds exp��ir � s� ; �8�

the spin-orbital-pair components Ijk�u� and hjk�u� are
expressed [5, 10] as the Fourier and Hankel transforms
of their characteristic functions Fjk�s� and Hjk�s�,

Ijk�u� � �2p�ÿ3
Z

ds exp��iu � s�Fjk�s� ; �9a�

hjk�u� � �2p2�ÿ1
Z1
0

ds s2 j0�us�Hjk�s� ; �9b�

where

Fjk�s� � F jj
kk�s� ÿ ds�j; k�F kj

kj �s� ; �9c�
Hjk�s� � Hjj

kk�s� ÿ ds�j; k�Hkj
kj �s� ; �9d�

in which

F jk
lm�s� � f �jk�s�flm�s�; Hjk

lm�s� � �4p�ÿ1
Z
dXs F

jk
lm�s� ; �9e�

fjk�s� �
Z

dr exp��is � r�w�j �r�wk�r� � f �kj�ÿs� ; �9f�

and s � �s;Xs�:
For atomic systems with the spatial function repre-

sented by Eq. (2) we obtain [5, 10]

fjk�s� �
������
4p
p Xlj�lk

l�jljÿlk j
il
�������������
2l� 1
p

cl�j; k�

� Y �l;mjÿmk
�Xs�Wljk�s� ; �10a�

where

Wljk�s� �
Z1
0

dr r2 jl�sr�R�j �r�Rk�r� � W �
lkj�s� ; �10b�

and cl�j; k� � cl�ljmj; lkmk� is the Condon-Shortley
parameter [11]. Note that due to the property of
cl�j; k�, the summation in Eq. (10a) is over every other
integer between the speci®ed values. Based on Eq. (10a),
the angular integration in the function Hjk

lm�s� is per-
formed analytically [10]. For the two components Hjj

kk�s�
and Hkj

kj �s� appearing in Eq. (9d), we have [5, 10]

Hjj
kk�s� �

Xmin�2lj;2lk�

l�0
�2l� 1�al�j; k�w�ljj�s�Wlkk�s� ; �11a�

Hkj
kj �s� �

Xlj�lk

l�jljÿlk j
�2l� 1�bl�k; j�jWlkj�s�j2 ; �11b�

where al�j; k� � cl�j; j�cl�k; k� and bl�j; k� � �cl�j; k��2
are Condon-Shortely parameters [11]. The summations
in Eqs. (11a) and (11b) are over every other integer
between the speci®ed values.

The intersubshell intracule densities Inl;n0l0 �u� and
hnl;n0l0 �u� are de®ned by

Inl;n0l0 �u� � 1

2

XN

j�1

XN

k�1�k 6�j�
dnnj dllj dn0nk dl0lk Ijk�u� ; �12a�

hnl;n0l0 �u� � 1

2

XN

j�1

XN

k�1�k 6�j�
dnnj dllj dn0nk dh�lk

hjk�u� ; �12b�

and the average intersubshell electron-pair distance
huinl;n0l0 by

huinl;n0l0 �
Z

du u Inl;n0l0 �u�

� 4p
Z1
0

du u3 hnl;n0l0 �u� : �12c�

The normalization of the intersubshell intracule densities
isZ

du Inl;n0l0 �u� � 4p
Z1
0

du u2 hnl;n0l0 �u�

�
Nnl�Nnl ÿ 1�=2; if n � n0 and l � l0;

NnlNn0l0 ; if n 6� n0 or l 6� l0 :

(
�12d�

Note that the intrasubshell densities Inl;nl�u� and hnl;nl�u�
are meaningful only when there are two or more
electrons in a subshell nl.

Exactly analogous de®nitions apply to themomentum-
space intracule �I�v� and �h�v� densities, their subshell
components, and the intersubshell electron-pair distances
hvinl;n0l0 , if we start from a momentum-space N -electron
wave function U�y1; . . . ; yN �, spin-orbitals /j�p�gj�r� and
atomic radial functions Pnjlj�p�.
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3 Computational details

Each atomic LS multiplet state is expressed in general by
a linear combination of a ®nite number of Slater
determinants in the Hartree-Fock theory, where L and
S represent the total orbital and spin angular momentum
quantum numbers, respectively. For the neutral atoms
from He to Xe in their experimental ground states [12],
we have previously con®rmed [5] that among
�2L� 1��2S � 1� degenerate states there exists at least
one state with speci®c z-component ML and MS values of
L and S that results in a single determinant wave
function to which our mathematical procedure described
in Sect. 2 can be applied.

For these ground multiplet states of the 53 neutral
atoms expressed by single determinant wave functions,
the Hartree-Fock radial functions Rj�r� � Rnjlj�r� in
position space were numerically generated using an en-
hanced and modi®ed version of the MCHF72 code [13,
14]. The spherically averaged one-electron subshell
density qnl�r� and the associated one-electron radius
hrinl in position space were obtained straightforwardly.
To obtain Wljk�s�, products Rj�r�Rk�r� of two radial
functions were numerically Hankel-transformed using
the algorithm of Talman [15]. Following Eqs. (9d), (11a)
and (11b), we obtained the intersubshell components
Hnl;n0l0 �s� of the characteristic function H�s� as the se-
lected sum of products of two Wljk�s� with appropriate
coe�cients. The Condon-Shortley parameters al�j; k�
and bl�j; k� were taken from Ref. [16]. An additional
Hankel transformation [cf. Eq. (9b)] of the function
Hnl;n0l0 �s� gave the intersubshell intracule density
hnl;n0l0 �u�, from which the intersubshell electron-pair
distance huinl;n0l0 was obtained.

For the determination of the corresponding one-
electron subshell quantities Pnl�p� and hpinl and the two-
electron intersubshell quantities �hnl;n0l0 �v� and hvinl;n0l0 in
momentum space, the position-space radial functions
Rj�r�, generated by numerical Hartree-Fock calcula-
tions, were ®rst Hankel-transformed to obtain the mo-
mentum-space radial functions Pj�p� � Pnjlj�p�
according to Eq. (4c). The same procedure was then
applied as in position space.

4 Numerical results and discussion

By de®nition, all one-electron subshell density functions
are normalized to the number of subshell electrons
Nnl, while all two-electron intersubshell density func-
tions are normalized to the number of electron pairs
Nnl�Nnl ÿ 1�=2 or NnlNn0l0 . Throughout this section,
however, we will use a modi®ed normalization scheme
which normalizes all one-electron subshell and two-
electron intersubshell densities to unity, in order to avoid
large numbers and to facilitate mutual comparison of
the one- and two-electron average distances.

For the Xe atom, Table 1 exempli®es the values of the
average intersubshell electron-pair distances huinl;n0l0 in
position space. Since Xe has 11 subshells, there are 66
pairs of subshells nl and n0l0, and the data are separated
into four groups according to the values of jnÿ n0j for

our later convenience. In Table 1, we ®nd two trends of
the huinl;n0l0 values: for given values of n and l, huinl;n0l0
increases with increasing n0, but is relatively insensitive
to l0. We know that similar trends are observed for the
atomic subshell radius hrinl. The result suggests that the
intersubshell electron-pair distances huinl;n0l0 have some
meaningful correlation with the subshell radii hrinl and
hrin0l0 or their derivatives.

As a simple model, we consider classically that two
electrons are moving independently on two concentric
spheres with radii r1 and r2, respectively. The average
distance U between the two electrons is calculated to
be

U � r> � 1

3

r2<
r>
; �13�

where r< � min�r1; r2� and r> � max�r1; r2�. For an
integer value of k, Sack [17] derived a general formula
for the expansion of rk

12 in terms of r1, r2, and h12:

rk
12 �

X1
l�0

gkl�r1; r2�Pl�cos h12� ; �14a�

where Pl�x� is the Legendre polynomial and gkl�r1; r2� is
an analytical function involving a hypergeometric func-
tion. A special case of Eq. (14a) for k � 1 is

r12 �
X1
l�0

1

2l� 3

rl�2
<

rl�1
>

ÿ 1

2lÿ 1

rl
<

rlÿ1
>

� �
Pl�cos h12� : �14b�

U is identical to the leading term of Eq. (14b). When the
expectation value of Eq. (14b) is examined over two
spin-orbitals, however, we cannot obtain any relation
between huinl;n0l0 and one-electron quantities because the
radial integrands include r> and r<. We then introduce a
one-electron quantity Unl;n0l0 de®ned by

Unl;n0l0 � Lr � 1

3

S2
r

Lr
; �15a�

as a quantum-mechanical analog of Eq. (13), where
Sr � min�hrinl; hrin0l0 � and Lr � max�hrinl; hrin0l0 �. For the
particular case of n � n0 and l � l0, Eq. (15a) reduces to

Unl;nl � 4
3hrinl ; �15b�

and the quantity Unl;n0l0 is able to correctly predict
accurate linear correlations reported [8] between huinl;nl
and hrinl. In Table 1 the Unl;n0l0 values for the Xe atom
are summarized and compared with the huinl;n0l0 values.
When the Unl;n0l0 values are used to estimate the electron-
pair distances huinl;n0l0 , the relative errors D range from
0.0 to 12.2% and the heuristic one-electron quantity
Unl;n0l0 is seen to be a satisfactory approximation to the
two-electron property huinl;n0l0 . An interesting point is
that the errors D are highly dependent on the jnÿ n0j
values. For jnÿ n0j � 0 the relative error is 4.4±12.2%,
but for jnÿ n0j � 1; 2; 3 and 4 the errors are only about
2, 0.3, 0.04, and 0.00%, respectively. Namely, the
accuracy of the approximation huinl;n0l0 � Unl;n0l0 increas-
es as the di�erence between two subshell radii increases.

Stimulated by these results, we have examined pos-
sible correlations between huinl;n0l0 and Unl;n0l0 , based on
the numerical Hartree-Fock data for the 1700 subshell
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pairs of the 53 atoms. We have found that there is good
linear correlation between the two-electron property
huinl;n0l0 and the one-electron property Unl;n0l0 of the 53
atoms if the data are classi®ed according to subshell
pairs speci®ed by the nl and n0l0 values. Table 2 sum-
marizes the correlation coe�cients (CCs) between
huinl;n0l0 and Unl;n0l0 , together with the values of the
parameter anl;n0l0 appearing in the least square linear
approximation,

huinl;n0l0 � anl;n0l0Unl;n0l0 : �16�
In Table 2 we ®nd that excellent correlations with
CC>0.9999 exist between huinl;n0l0 and Unl;n0l0 for all
subshell pairs with two exceptions, i.e. the 5p-5p and 4d-
5s pairs, where CC = 0.99985 and 0.99975, respectively.
The CCs in Table 2 show a tendency to approach unity
(i.e. perfect linearity) as jnÿ n0j increases and we have
CC=1.000000 for all subshell pairs with jnÿ n0j > 1.
Figure 1 depicts examples of the linear correlation for a
few selected subshell pairs. In Table 2 the proportion-
ality constants anl;n0l0 are distributed between 1.00 and
1.15 and do not di�er much from one subshell pair to
another. Moreover, the anl;n0l0 values tend to approach
unity as jnÿ n0j increases, as anticipated from the results
for Xe in Table 1. It may be interesting to ®nd the
presence of an approximate but accurate linear relation

between the one-electron subshell property Unl;n0l0 and
the average electron-electron distance huinl;n0l0 . When the
huinl;n0l0 values are estimated from the Unl;n0l0 values based
on the regression line, Eq. (16), with the anl;n0l0 values in
Table 2, the average relative error Dav for each subshell
pair is largest for the 3d-3d pair with 1.31% among the
66 pairs. In most cases Dav is smaller than 0.5%, as
shown in Table 2. Linear correlation between huinl;n0l0
and Unl;n0l0 is concluded to be highly accurate though not
rigorous.

The linearity observed above depends on the princi-
pal n and azimuthal l quantum numbers of two atomic
subshells. To explain this fact, we have considered a
hydrogenic radial function with an exponent f � Z=n
with Z being nuclear charge,

Rnl�r� � �ÿ1�nÿlÿ12f3=2
�nÿ lÿ 1�!

n�n� l�!
� �1=2

� �2fr�lL2l�1
nÿlÿ1�2fr� exp�ÿfr� ; �17�

where Lk
n�x� is the associated Laguerre polynomial and

the phase factor �ÿ1�nÿlÿ1 is included for consistency
through Eq. (4c) with the momentum-space counterpart
which will be introduced later. A pair of hydrogenic
functions, Eq. (17), predicts that the electron-pair
distance huinl;n0l0 and the one-electron subshell property

Table 1. Intersubshell electron-pair distances huinl, n¢l¢ and one-electron subshell quantities Unl,n¢l¢ in position space for the Xe atom

jn)n¢j nl n¢l¢ huinl,n¢l¢ Unl,n¢l¢ D jn±n¢j nl n¢l¢ huinl,n¢l¢ Unl,n¢l¢ D

0 1s 1s 0.041064 0.037521 8.63 1 3d 4p 0.825805 0.810736 1.82
2s 2s 0.170717 0.161164 5.60 4d 0.915303 0.900546 1.61

2p 0.170682 0.150176 12.01 4s 5s 2.109903 2.074419 1.68
2p 2p 0.147671 0.137443 6.93 5p 2.446091 2.417173 1.18
3s 3s 0.446727 0.424928 4.88 4p 5s 2.120872 2.082554 1.81

3p 0.477162 0.418838 12.22 5p 2.456741 2.424065 1.33
3d 0.425712 0.400892 5.83 4d 5s 2.155927 2.108454 2.20

3p 3p 0.439137 0.412567 6.05 5p 2.491006 2.446010 1.81
3d 0.428556 0.394084 8.04

3d 3d 0.396587 0.373778 5.75 2 1s 3s 0.320248 0.319524 0.23
4s 4s 1.040168 0.993690 4.47 3p 0.311137 0.310279 0.28

4p 1.152916 1.015293 11.94 3d 0.281856 0.281275 0.21
4d 1.146506 1.083147 5.53 2s 4s 0.755214 0.751802 0.45

4p 4p 1.095921 1.036031 5.46 4p 0.786732 0.783291 0.44
4d 1.196345 1.101659 7.91 4d 0.879104 0.876046 0.35

4d 4d 1.229494 1.160602 5.60 2p 4s 0.752679 0.750020 0.35
5s 5s 2.762986 2.641278 4.40 4p 0.784303 0.781582 0.35

5p 3.266537 2.897469 11.30 4d 0.877130 0.874520 0.30
5p 5p 3.298940 3.117312 5.51 3s 5s 2.005104 1.998049 0.35

5p 2.358555 2.352465 0.26
1 1s 2s 0.125051 0.123057 1.59 3p 5s 2.003907 1.997070 0.34

2p 0.108449 0.105643 2.59 5p 2.357645 2.351635 0.25
2s 3s 0.342141 0.333977 2.39 3d 5s 2.000094 1.994183 0.30

3p 0.333816 0.325165 2.59 5p 2.354398 2.349189 0.22
3d 0.305377 0.297706 2.51

2p 3s 0.335770 0.329810 1.77 3 1s 4s 0.745908 0.745622 0.04
3p 0.327557 0.320872 2.04 4p 0.777664 0.777363 0.04
3d 0.300707 0.292968 2.57 4d 0.870984 0.870755 0.03

3s 4s 0.810180 0.790695 2.40 2s 5s 1.984590 1.983417 0.06
4p 0.838513 0.820594 2.14 5p 2.341090 2.340067 0.04
4d 0.925778 0.909346 1.77 2p 5s 1.983683 1.982747 0.05

3p 4s 0.805791 0.788091 2.20 5p 2.340319 2.339499 0.04
4p 0.835756 0.818096 2.11
4d 0.923889 0.907116 1.82 4 1s 5s 1.981186 1.981092 0.00

3d 4s 0.795181 0.780417 1.86 5p 2.338180 2.338097 0.00
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Unl;n0l0 are proportional, and the proportionality con-
stant is independent of Z but dependent on the four
quantum numbers, electronic con®gurations, and LS

coupling of electrons in relevant subshells. For pairs of
closed ns�2�, n0p�6�, and n00d�10� subshells with 1S
coupling, we have evaluated the hydrogenic proportion-
ality constants and tabulated them in Table 2. Compar-
ison of the hydrogenic and Hartree-Fock anl;n0l0 values in
Table 2 shows that the relative error of hydrogenic
constants is at most 3.5%, and our hydrogenic model
with the correct nodal structure of atomic subshells
appears to explain semiquantitatively the observed linear
correlations between huinl;n0l0 and Unl;n0l0 . However, the
di�erences between the hydrogenic and Hartree-Fock
constants are larger in general for a pair of outer
subshells than for a pair of inner subshells.

The intersubshell electron-pair distances hvinl;n0l0 in
momentum space are summarized in Table 3 for the Xe
atom. We can see from Table 3, that for given values of n
and l, the electron-pair distance hvinl;n0l0 decreases as n0
increases. The subshell radius hpinl also decreases with
increasing n in momentum space. The trend is exactly
opposite to that which we have seen in position space
due to the position-momentum reciprocity: an inner
subshell with a tight electron density distribution around
the nucleus �r � 0� in position space has a di�use density
distribution in momentum space, while an outer subshell
with a di�use density in position space has a momentum
density condensed around the momentum origin p � 0.

Fig. 1. Examples of the linear correlations observed in position
space between huinl;n0l0 and Unl;n0l0 . Note that all the parent subshell
and intersubshell densities are normalized to unity

Table 3. Intersubshell electron-pair distances hvinl;n0l0 and one-electron subshell quantities Vnl;n0l0 in momentum space for the Xe atom

jnÿn0j nl n¢l¢ hvinl;n0l0 Vnl;n0l0 D jnÿn0j nl n¢l¢ hvinl;n0l0 Vnl;n0l0 D

0 1s 1s 66.11437 60.40263 8.64 1 3d 4p 13.06400 12.39158 5.15
2s 2s 25.48414 21.79390 14.48 4d 12.95566 12.43204 4.04

2p 29.46985 26.12674 11.34 4s 5s 4.607850 4.148187 9.98
2p 2p 31.66702 29.46175 6.96 5p 4.494404 4.145602 7.76
3s 3s 13.07947 10.99588 15.93 4p 5s 4.918076 4.558774 7.31

3p 14.22833 12.17728 14.42 5p 4.822722 4.556438 5.52
3d 15.41292 13.75590 10.75 4d 5s 5.002363 4.713644 5.77

3p 3p 14.98250 13.17801 12.04 5p 4.936156 4.711390 4.55
3d 16.12505 14.59117 9.51

3d 3d 16.76650 15.78852 5.83 2 1s 3s 47.00206 45.80240 2.55
4s 4s 6.407826 5.327632 16.86 3p 47.28941 46.02073 2.68

4p 6.713185 5.624769 16.21 3d 47.07563 46.33371 1.58
4d 6.672113 5.742481 13.93 2s 4s 17.55979 16.67101 5.06

4p 4p 6.829005 5.894636 13.68 4p 17.62701 16.74400 5.01
4d 6.903830 6.002941 13.05 4d 17.47074 16.77332 3.99

4d 4d 6.808747 6.107534 10.30 2p 4s 22.87734 22.33716 2.36
5s 5s 2.183669 1.802514 17.45 4p 22.88726 22.39116 2.17

5p 2.179716 1.794875 17.66 4d 22.80214 22.41284 1.71
5p 5p 2.064398 1.787172 13.43 3s 5s 8.616127 8.320777 3.43

5p 8.551507 8.319525 2.71
1 1s 2s 50.99083 47.26784 7.30 3p 5s 10.15942 9.945147 2.11

2p 53.09924 48.89451 7.92 5p 10.10377 9.944102 1.58
2s 3s 20.25446 17.73238 12.45 3d 5s 12.04390 11.89284 1.25

3p 20.97990 18.33749 12.59 5p 12.00500 11.89196 0.94
3d 21.32249 19.20491 9.93

2p 3s 24.71897 23.12230 6.46 3 1s 4s 45.79215 45.41945 0.81
3p 25.04899 23.56992 5.90 4p 45.81194 45.44579 0.80
3d 25.56132 24.21157 5.28 4d 45.68556 45.45636 0.50

3s 4s 10.23216 8.892232 13.10 2s 5s 16.55917 16.38269 1.07
4p 10.30719 9.036902 12.32 5p 16.51929 16.38206 0.83
4d 10.14104 9.094997 10.31 2p 5s 22.22607 22.12388 0.46

3p 4s 11.43623 10.42198 8.87 5p 22.19816 22.12341 0.34
4p 11.46822 10.54269 8.07
4d 11.38155 10.59116 6.94 4 1s 5s 45.38140 45.31542 0.15

3d 4s 13.00129 12.29082 5.46 5p 45.36546 45.31519 0.11
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Since our classical model of two independent electrons
moving on two concentric momentum spheres results in
an expression isomorphic to Eq. (13) for the electron-
pair momentum distance V , we introduce a momentum-
space one-electron quantity Vnl;n0l0 de®ned by

Vnl;n0l0 � Lp � 1

3

S2
p

Lp
; �18�

where Sp � min�hpinl; hpin0l0 � and Lp � max�hpinl;hpin0l0 �. When n � n0 and l � l0, Eq. (18) simpli®es to
Vnl;nl � �4=3�hpinl and Vnl;n0l0 explains the linearity
found previously [8] between hvinl;nl and hpinl. In Table
3 the values of Vnl;n0l0 for the Xe atom are shown and
compared them with the corresponding hvinl;n0l0 values.
When Vnl;n0l0 is employed as an approximation for
hvinl;n0l0 , the relative errors D range from 0.1 to 16.9%.
The errors tend to decrease as jnÿ n0j increases as they
do in position space. Though the accuracy is slightly
poorer than that in position space, the one-electron
subshell quantity Vnl;n0l0 can be used to estimate the
electron-pair momentum distance hvinl;n0l0 .

We have examined correlations between hvinl;n0l0 and
Vnl;n0l0 for the 1700 subshell pairs of the 53 neutral atoms.
The results are summarized in Table 4, where bnl;n0l0 is
the parameter appearing in the least square linear ®tting,

hvinl;n0l0 � bnl;n0l0Vnl;n0l0 : �19�
An excellent linear correlation is seen in Table 4, as was
in position space. All the CCs between hvinl;n0l0 and Vnl;n0l0

are larger than 0.9999, but we have eight exceptions
when 4s or 5s subshells participate. Thus, the two-
electron hvinl;n0l0 and one-electron Vnl;n0l0 properties are
essentially proportional. The proportionality constants
bnl;n0l0 in Table 4 range from 1.00 to 1.21 and show a
tendency to approach unity with increasing jnÿ n0j.
When Eq. (19) is employed to approximate hvinl;n0l0
based on Vnl;n0l0 , the average relative error Dav is largest
(3.30%) for the 3s-4s subshell pair, but does not exceed
1% for many subshell pairs. The linear correlations
observed in momentum space are illustrated in Fig. 2 for
a few selected subshell pairs.

When momentum-space hydrogenic radial functions,

Pnl�p� � �ÿi�l2l�2f5=2l!
2n�nÿ lÿ 1�!

p�n� l�!
� �1=2

� �2fp�l
�p2 � f2�l�2 Cl�1

nÿlÿ1
f2 ÿ p2

f2 � p2

� �
; �20�

with Ck
n�x� being the Gegenbauer polynomial and

f � Z=n, are assumed for two closed subshells nl and
n0l0, we ®nd that the quantities hvinl;n0l0 and Vnl;n0l0 are
precisely proportional independent of Z. The hydrogenic
proportionality constants bnl;n0l0 are summarized in Table
4. When the two sets of proportionality constants in
Table 4 are compared, we ®nd that the Hartree-Fock
results are approximately explained by the hydrogenic
model. However, the di�erence between the correspond-
ing two values is not small when outer subshells are
concerned and the maximum relative error of the
hydrogenic result amounts to 12.8% for the 3s-5p
subshell pair.

5 Summary

We have studied the average distances huinl;n0l0 in
position space and hvinl;n0l0 in momentum space between
an electron in a subshell nl and another electron in a
subshell n0l0 of ground-state atoms. Analysis of 1700
subshell pairs of the 53 neutral atoms from He to Xe has
shown that the electron-pair distances huinl;n0l0 in posi-
tion space have an accurate linear correlation with a
one-electron quantity Unl;n0l0 � Lr � S2

r =�3Lr�, where Lr
and Sr are the larger and smaller of subshell radii hrinl
and hrin0l0 , respectively. The correlation coe�cients are
greater than 0.9999 for 64 subshell pairs among a total
of 66 pairs appearing in the 53 atoms. The momentum-
space electron-pair distances hvinl;n0l0 also have an
accurate linear correlation with a one-electron momen-
tum quantity Vnl;n0l0 � Lp � S2

p=�3Lp�, where Lp and Sp are
the larger and smaller of average subshell momenta hpinl
and hpin0l0 , respectively. The correlation coe�cients are
again larger than 0.9999 for 58 subshell pairs of the total
66 pairs. Trends in the proportionality constants be-
tween huinl;n0l0 and Unl;n0l0 and between hvinl;n0l0 and Vnl;n0l0

can be roughly explained by assuming hydrogenic radial
functions for the two relevant subshells.
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