Regular article

Atomic electron-pair distances and subshell radii in position and momentum space*

Toshikatsu Koga, Hisashi Matsuyama

Department of Applied Chemistry, Muroran Institute of Technology, Muroran, Hokkaido 050-8585, Japan

Received: 8 April 1998 / Accepted: 6 July 1998 / Published online: 18 September 1998

Abstract. For the 53 neutral atoms from He to Xe in their ground states, the average distances $\langle u \rangle_{nl,n'l'}$ in position space and $\langle v \rangle_{nl,n'l'}$ in momentum space between an electron in a subshell nl and another electron in a subshell n'l' are studied, where *n* and *l* are the principal and azimuthal quantum numbers of an atomic subshell, respectively. Analysis of 1700 subshell pairs shows that the electron-pair distances $\langle u \rangle_{nl,n'l'}$ in position space have an empirical but very accurate linear correlation with a one-electron quantity $U_{nl,n'l'} \equiv L_r + S_r^2/(3L_r)$, where L_r and S_r are the larger and smaller of subshell radii $\langle r \rangle_{nl}$ and $\langle r \rangle_{n'l'}$, respectively. The correlation coefficients are never smaller than 0.999 for the 66 different combinations of two subshells appearing in the 53 atoms. The same is also true in momentum space, and the electronpair momentum distances $\langle v \rangle_{nl,n'l'}$ have an accurate linear correlation with a one-electron momentum quantity $V_{nl,n'l'} \equiv L_p + S_p^2/(3L_p)$, where L_p and S_p are the larger and smaller of average subshell momenta $\langle p \rangle_{nl}$ and $\langle p \rangle_{n'l'}$, respectively. Trends in the proportionality constants between $\langle u \rangle_{nl,n'l'}$ and $U_{nl,n'l'}$ and between $\langle v \rangle_{nl,n'l'}$ and $V_{nl,n'l'}$ are discussed based on a hydrogenic model for the subshell radial functions.

Key words: Two-electron intracule density – Electronpair distance – Atomic subshell radius – Position space – Momentum space

1 Introduction

In atoms and atomic ions, the distribution of electrons around the nucleus is specified (see, e.g., [1, 2]) by the spherical average $\rho(r)$ of the spin-reduced one-electron

Correspondence to: T. Koga

density function $\rho(\mathbf{r})$, where **r** is the position vector of an electron and $r = |\mathbf{r}|$. The average electron-nucleus distance $\langle r \rangle$ follows immediately from $\rho(r)$ and characterizes the motion of electrons in an atomic system. Correspondingly, the distribution of electron momenta is determined (see, e.g., [2]) by the spherical average $\Pi(p)$ of the spin-reduced one-electron momentum density function $\Pi(\mathbf{p})$, where **p** is the momentum vector of an electron and $p = |\mathbf{p}|$. The average momentum $\langle p \rangle$ follows from $\Pi(p)$ and characterizes the electronic motion from an alternative point of view.

In addition to the knowledge of the motion of a single electron, that of the relative motion of two electrons is important for a more profound understanding of the electronic structure of atoms. The relative motion of a pair of electrons in position space is described (see, e.g., [3–6]) by the intracule density $I(\mathbf{u})$ and its spherical averages h(u), which are the probability density functions for the relative vector $\mathbf{r}_i - \mathbf{r}_i$ and its magnitude $|\mathbf{r}_i - \mathbf{r}_i|$ of any pair of electrons i and j to be \mathbf{u} and u, respectively. The corresponding intracule density and spherical average, $I(\mathbf{v})$ and h(v), are introduced in momentum space and represent the probability densities for the relative momentum vector $\mathbf{p}_i - \mathbf{p}_i$ and its magnitude $|\mathbf{p}_i - \mathbf{p}_i|$ of any pair of electrons *i* and *j* to be **v** and *v*, respectively. The average interelectronic distances $\langle u \rangle$ in position space and $\langle v \rangle$ in momentum space are obtained from the spherically averaged intracule densities h(u)and h(v).

Even in atomic systems, the motion of any single electron around the coordinate origin and the relative motion of any pair of electrons are essentially different problems, and the associated one- and two-electron properties, such as the densities and the average distances, do not seem to have any definite relation. For the 53 neutral atoms from He to Xe we have recently examined [7, 8] the average interelectronic distance $\langle u \rangle_{nl}$ of a pair of electrons in an atomic subshell specified by the principal *n* and azimuthal *l* quantum numbers and found within the Hartree-Fock framework that $\langle u \rangle_{nl}$ has an accurate linear correlation with the average one-electron distance or subshell radius $\langle r \rangle_{nl}$. The same is true in momentum space, and the subshell interelection.

^{*} Contribution to the Kenichi Fukui Memorial Issue

tronic distance $\langle v \rangle_{nl}$ has been found to be proportional to the average one-electron momentum $\langle p \rangle_{nl}$ of that subshell. The proportionality constant in each space depends on the values of *n* and *l*.

In the present paper, we examine the average distances $\langle u \rangle_{nl,n'l'}$ in position space and $\langle v \rangle_{nl,n'l'}$ in momentum space between an electron in a subshell nl and another electron in a subshell n'l' within the Hartree-Fock approximation. The 53 neutral atoms from He to Xe in their experimental ground states are the subject of this study, and hence there is a total of 1700 pairs of subshells nl and n'l'. Section 2 summarizes the definitions of one- and two-electron density functions, their subshell decompositions, and the associated average distances. In Sect. 3 we describe our computational procedures based on the numerical Hartree-Fock method. The results are presented and discussed in Sect. 4. From the analysis of the results of 1700 subshell pairs, it will be found that the electron-pair distances $\langle u \rangle_{nl,n'l'}$ in position space have a very accurate linear correlation with a one-electron quantity $U_{nl,n'l'} \equiv$ $L_r + S_r^2/(3L_r)$, where L_r and S_r are the larger and smaller of subshell radii $\langle r \rangle_{nl}$ and $\langle r \rangle_{n'l'}$, respectively. Analogously, the electron-pair momentum distances $\langle v \rangle_{nl,n'l'}$ have an accurate linear correlation with a one-electron momentum-space quantity $V_{nl,n'l'} \equiv$ $L_p + S_p^2/(3L_p)$, where L_p and S_p are the larger and smaller of average subshell momenta $\langle p \rangle_{nl}$ and $\langle p \rangle_{n'l'}$, respectively. Hartree atomic units are used throughout this paper.

2 Definitions

2.1 One-electron densities and subshell radii

For an *N*-electron system $(N \ge 1)$, the spin-reduced oneelectron density $\rho(\mathbf{r})$ and its spherical average $\rho(r)$ in position space are defined [1, 2, 9] by

$$\rho(r) \equiv N \int d\sigma \, d\mathbf{x}_2 \dots d\mathbf{x}_N |\Psi(\mathbf{x}, \mathbf{x}_2, \dots, \mathbf{x}_N)|^2 \quad , \tag{1a}$$

$$\rho(r) \equiv (4\pi)^{-1} \int d\Omega_r \,\rho(\mathbf{r}) \quad , \tag{1b}$$

where $\mathbf{r} \equiv (r, \Omega_r)$ with $\Omega_r \equiv (\theta_r, \phi_r)$, $\Psi(\mathbf{x}_1, \dots, \mathbf{x}_N)$ is the electronic wave function of the system under consideration, and $\mathbf{x}_i \equiv (\mathbf{r}_i, \sigma_i)$ is the combined position-spin coordinate of the electron *i*.

For a single Slater determinant Hartree-Fock wave function composed on N orthonormal spin-orbitals $\psi_j(\mathbf{r})\eta_j(\sigma)$, Eq. (1a) is rewritten as a sum of orbital contributions $|\psi_j(\mathbf{r})|^2$. For atoms and atomic ions, we can generally assume that the spatial function $\psi_j(\mathbf{r})$ has the form

$$\psi_i(\mathbf{r}) = R_{n_i l_i}(r) Y_{l_i m_i}(\Omega_r) \quad , \tag{2}$$

where $Y_{lm}(\Omega)$ is a spherical harmonic. The oneelectron densities $\rho(\mathbf{r})$ and $\rho(r)$ for atoms are decomposed into contributions from different subshells specified by a set of the principal *n* and azimuthal *l* quantum numbers.

$$\rho(\mathbf{r}) = \sum_{nl} \rho_{nl}(\mathbf{r}), \quad \rho_{nl}(\mathbf{r}) = \sum_{j=1}^{N} \delta_{nn_j} \delta_{ll_j} |\psi_j(\mathbf{r})|^2 \quad , \qquad (3a)$$

$$\rho(r) = \sum_{nl} \rho_{nl}(r), \quad \rho_{nl}(r) = (4\pi)^{-1} \sum_{j=1}^{N} \delta_{nn_j} \delta_{ll_j} |R_{n_j l_j}(r)|^2 ,$$
(3b)

where δ_{ij} denotes the Kronecker delta. The average oneelectron subshell distance $\langle r \rangle_{nl}$ is given by

$$\langle r \rangle_{nl} \equiv \int d\mathbf{r} \, r \rho_{nl}(\mathbf{r}) = 4\pi \int_{0}^{\infty} dr \, r^{3} \, \rho_{nl}(r) \, .$$
 (3c)

The normalization of the subshell densities is

$$\int d\mathbf{r}\rho_{nl}(\mathbf{r}) = 4\pi \int_{0}^{\infty} dr \, r^{2}\rho_{nl}(r) = N_{nl} \quad , \tag{3d}$$

where N_{nl} is the number of electrons in the subshell nl. The reduced quantity $\langle r \rangle_{nl} / N_{nl}$ is hereafter referred to as the subshell radius.

If we start from a momentum-space *N*-electron wave function $\Phi(y_1, \ldots, y_N)$, where $y_i \equiv (\mathbf{p}_i, \sigma_i)$ is the combined momentum-spin coordinate of electron *i*, an exactly analogous procedure defines the momentum-space one-electron density $\Pi(\mathbf{p})$ and its spherical average $\Pi(p)$. The Hartree-Fock wave function in momentum space has exactly the same determinantal structure as that in position space, provided that the one-electron spatial function $\psi_j(\mathbf{r})$ is replaced with

$$\phi_j(\mathbf{p}) = (2\pi)^{-3/2} \int d\mathbf{r} \exp(-i\mathbf{p} \cdot \mathbf{r}) \psi_j(\mathbf{r}) \quad . \tag{4a}$$

For the position-space atomic orbital given by Eq. (2), the corresponding momentum-space orbital is

$$\phi_j(\mathbf{p}) = P_{n_j l_j}(p) Y_{l_j m_j}(\Omega_p) \quad , \tag{4b}$$

where $\mathbf{p} \equiv (p, \Omega_p)$ and

$$P_{n_j l_j}(p) = (-\mathbf{i})^{l_j} \sqrt{\frac{2}{\pi}} \int_0^\infty dr \, r^2 j_{l_j}(pr) R_{n_j l_j}(r) \quad , \tag{4c}$$

in which $j_l(x)$ is the *l*th order spherical Bessel function of the first kind. The subshell components $\Pi_{nl}(\mathbf{p}), \Pi_{nl}(p)$, and $\langle p \rangle_{nl}$ in momentum space are obtained from equations analogous to Eqs. (3a)–(3c).

2.2 Intracule densities and intersubshell electron-pair distances

For an *N*-electron system $(N \ge 2)$ the intracule density $I(\mathbf{u})$ and its spherical average h(u) are defined [3, 4] by

$$I(\mathbf{u}) \equiv \int d\mathbf{r}_1 \ d\mathbf{r}_2 \ \delta[\mathbf{u} - (\mathbf{r}_1 - \mathbf{r}_2)] \Gamma(\mathbf{r}_1, \mathbf{r}_2) \ , \qquad (5a)$$

$$h(u) \equiv (4\pi)^{-1} \int d\Omega_u I(\mathbf{u}) \quad , \tag{5b}$$

where $\mathbf{u} \equiv (u, \Omega_u)$ with $\Omega_u \equiv (\theta_u, \phi_u)$, $\delta(\mathbf{r})$ is the threedimensional Dirac delta function, and $\Gamma(\mathbf{r}_1, \mathbf{r}_2)$ is the spin-reduced two-electron density function [2, 9],

$$\Gamma(\mathbf{r}_1, \mathbf{r}_2) \equiv \binom{N}{2} \int d\sigma_1 \ d\sigma_2 \ dx_3 \dots \ dx_N |\Psi(\mathbf{x}_1, \dots, \mathbf{x}_N)|^2 \ .$$
(6)

For a single Slater determinant wave function composed of N orthonormal spin-orbitals $\psi_j(\mathbf{r})\eta_j(\sigma)$, $\Gamma(\mathbf{r}_1, \mathbf{r}_2)$ reduces to a sum of spin-orbital-pair contributions,

$$\Gamma(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{2} \sum_{j=1}^{N} \sum_{k=1}^{N} \Gamma_{jk}(\mathbf{r}_1, \mathbf{r}_2) \quad ,$$
(7a)

$$\Gamma_{jk}(\mathbf{r}_{1}, \mathbf{r}_{2}) = |\psi_{j}(\mathbf{r}_{1})|^{2} |\psi_{k}(\mathbf{r}_{2})|^{2} - \delta_{s}(j, k)$$
$$\times [\psi_{j}^{*}(\mathbf{r}_{1})\psi_{k}(\mathbf{r}_{1})][\psi_{k}^{*}(\mathbf{r}_{2})\psi_{j}(\mathbf{r}_{2})] , \qquad (7b)$$

where $\delta_s(j,k)$ is unity if the two spin-orbitals j and k have the same spin and zero if they have opposite spins. Accordingly, the intracule densities $I(\mathbf{u})$ and h(u) are decomposed into spin-orbital-pair components $I_{jk}(\mathbf{u})$ and $h_{jk}(u)$, respectively. When we use the kernel of three-dimensional Fourier transformations for the Dirac delta function,

$$\delta(\mathbf{r}) = (2\pi)^{-3} \int d\mathbf{s} \, \exp(+i\mathbf{r} \cdot \mathbf{s}) \,, \qquad (8)$$

the spin-orbital-pair components $I_{jk}(\mathbf{u})$ and $h_{jk}(u)$ are expressed [5, 10] as the Fourier and Hankel transforms of their characteristic functions $F_{jk}(\mathbf{s})$ and $H_{jk}(s)$,

$$I_{jk}(\mathbf{u}) = (2\pi)^{-3} \int d\mathbf{s} \exp(+i\mathbf{u} \cdot \mathbf{s}) F_{jk}(\mathbf{s}) , \qquad (9a)$$
$$h_{ik}(u) = (2\pi^2)^{-1} \int_{-\infty}^{\infty} ds \, s^2 \, j_0(us) H_{ik}(s) , \qquad (9b)$$

$$h_{jk}(u) = (2\pi^2)^{-1} \int_0^{-1} ds \, s^2 \, j_0(us) H_{jk}(s) \quad , \tag{9b}$$

where

$$F_{jk}(\mathbf{s}) \equiv F_{kk}^{jj}(\mathbf{s}) - \delta_s(j,k) F_{kj}^{kj}(\mathbf{s}) \quad , \tag{9c}$$

$$H_{jk}(s) \equiv H_{kk}^{jj}(s) - \delta_s(j,k) H_{kj}^{kj}(s) \quad , \tag{9d}$$

in which

$$F_{lm}^{jk}(\mathbf{s}) \equiv f_{jk}^*(\mathbf{s}) f_{lm}(\mathbf{s}), \ \mathbf{H}_{lm}^{j\mathbf{k}}(\mathbf{s}) \equiv (4\pi)^{-1} \int d\Omega_s \ \mathbf{F}_{lm}^{j\mathbf{k}}(\mathbf{s}) \ , \ (9e)$$

$$f_{jk}(\mathbf{s}) \equiv \int d\mathbf{r} \exp(+\mathbf{i}\mathbf{s} \cdot \mathbf{r}) \psi_j^*(\mathbf{r}) \psi_k(\mathbf{r}) = f_{kj}^*(-\mathbf{s}) \quad , \qquad (9f)$$

and $\mathbf{s} \equiv (s, \Omega_s)$.

For atomic systems with the spatial function represented by Eq. (2) we obtain [5, 10]

$$f_{jk}(\mathbf{s}) = \sqrt{4\pi} \sum_{l=|l_j-l_k|}^{l_j+l_k} i^l \sqrt{2l+1}c^l(j;k) \times Y^*_{l,m_j-m_k}(\Omega_s) W_{ljk}(s) , \qquad (10a)$$

$$W_{ljk}(s) \equiv \int_{0}^{\infty} dr \ r^2 \ j_l(sr) R_j^*(r) R_k(r) = W_{lkj}^*(s) \ , \qquad (10b)$$

and $c^{l}(j;k) \equiv c^{l}(l_{j}m_{j};l_{k}m_{k})$ is the Condon-Shortley parameter [11]. Note that due to the property of $c^{l}(j;k)$, the summation in Eq. (10a) is over every other integer between the specified values. Based on Eq. (10a), the angular integration in the function $H_{lm}^{jk}(s)$ is performed analytically [10]. For the two components $H_{kk}^{jj}(s)$ and $H_{kj}^{kj}(s)$ appearing in Eq. (9d), we have [5, 10]

$$H_{kk}^{jj}(s) = \sum_{l=0}^{\min(2l_j, 2l_k)} (2l+1)a^l(j;k)w_{ljj}^*(s)W_{lkk}(s) , \quad (11a)$$

$$H_{kj}^{kj}(s) = \sum_{l=|l_j-l_k|}^{l_j+l_k} (2l+1)b^l(k;j)|W_{lkj}(s)|^2 , \qquad (11b)$$

where $a^{l}(j;k) \equiv c^{l}(j;j)c^{l}(k;k)$ and $b^{l}(j;k) \equiv [c^{l}(j;k)]^{2}$ are Condon-Shortely parameters [11]. The summations in Eqs. (11a) and (11b) are over every other integer between the specified values.

The intersubshell intracule densities $I_{nl,n'l'}(\mathbf{u})$ and $h_{nl,n'l'}(u)$ are defined by

$$I_{nl,n'l'}(\mathbf{u}) = \frac{1}{2} \sum_{j=1}^{N} \sum_{k=1(k\neq j)}^{N} \delta_{nn_j} \,\delta_{ll_j} \,\delta_{n'n_k} \,\delta_{l'l_k} \,I_{jk}(\mathbf{u}) \,, \quad (12a)$$

$$h_{nl,n'l'}(u) = \frac{1}{2} \sum_{j=1}^{N} \sum_{k=1(k \neq j)}^{N} \delta_{nn_j} \,\delta_{ll_j} \,\delta_{n'n_k} \,\delta_{hl_k} \,h_{jk}(u) \,, \quad (12b)$$

and the average intersubshell electron-pair distance $\langle u \rangle_{nl,n'l'}$ by

$$\langle u \rangle_{nl,n'l'} \equiv \int d\mathbf{u} \, u \, I_{nl,n'l'}(\mathbf{u})$$
$$= 4\pi \int_{0}^{\infty} du \, u^3 \, h_{nl,n'l'}(u) \quad . \tag{12c}$$

The normalization of the intersubshell intracule densities is

$$\int d\mathbf{u} \ I_{nl,n'l'}(\mathbf{u}) = 4\pi \int_{0}^{\infty} du \ u^{2} \ h_{nl,n'l'}(u)$$

$$= \begin{cases} N_{nl}(N_{nl}-1)/2, & \text{if } n = n' \text{ and } l = l', \\ N_{nl}N_{n'l'}, & \text{if } n \neq n' \text{ or } l \neq l'. \end{cases}$$
(12d)

Note that the intrasubshell densities $I_{nl,nl}(\mathbf{u})$ and $h_{nl,nl}(u)$ are meaningful only when there are two or more electrons in a subshell nl.

Exactly analogous definitions apply to the momentumspace intracule $\bar{I}(\mathbf{v})$ and $\bar{h}(v)$ densities, their subshell components, and the intersubshell electron-pair distances $\langle v \rangle_{nl,n'l'}$, if we start from a momentum-space *N*-electron wave function $\Phi(\mathbf{y}_1, \dots, \mathbf{y}_N)$, spin-orbitals $\phi_j(\mathbf{p})\eta_j(\sigma)$ and atomic radial functions $P_{n_i l_i}(p)$.

3 Computational details

Each atomic *LS* multiplet state is expressed in general by a linear combination of a finite number of Slater determinants in the Hartree-Fock theory, where *L* and *S* represent the total orbital and spin angular momentum quantum numbers, respectively. For the neutral atoms from He to Xe in their experimental ground states [12], we have previously confirmed [5] that among (2L+1)(2S+1) degenerate states there exists at least one state with specific *z*-component M_L and M_S values of *L* and *S* that results in a single determinant wave function to which our mathematical procedure described in Sect. 2 can be applied.

For these ground multiplet states of the 53 neutral atoms expressed by single determinant wave functions, the Hartree-Fock radial functions $R_i(r) \equiv R_{n_i l_i}(r)$ in position space were numerically generated using an enhanced and modified version of the MCHF72 code [13, 14]. The spherically averaged one-electron subshell density $\rho_{nl}(r)$ and the associated one-electron radius $\langle r \rangle_{nl}$ in position space were obtained straightforwardly. To obtain $W_{lik}(s)$, products $R_i(r)R_k(r)$ of two radial functions were numerically Hankel-transformed using the algorithm of Talman [15]. Following Eqs. (9d), (11a) and (11b), we obtained the intersubshell components $H_{nl,n'l'}(s)$ of the characteristic function H(s) as the selected sum of products of two $W_{lik}(s)$ with appropriate coefficients. The Condon-Shortley parameters $a^{i}(j;k)$ and $b^{i}(j;k)$ were taken from Ref. [16]. An additional Hankel transformation [cf. Eq. (9b)] of the function $H_{nl,n'l'}(s)$ gave the intersubshell intracule density $h_{nl,n'l'}(u)$, from which the intersubshell electron-pair distance $\langle u \rangle_{nl,n'l'}$ was obtained.

For the determination of the corresponding oneelectron subshell quantities $\Pi_{nl}(p)$ and $\langle p \rangle_{nl}$ and the twoelectron intersubshell quantities $\bar{h}_{nl,n'l'}(v)$ and $\langle v \rangle_{nl,n'l'}$ in momentum space, the position-space radial functions $R_j(r)$, generated by numerical Hartree-Fock calculations, were first Hankel-transformed to obtain the momentum-space radial functions $P_j(p) \equiv P_{n_j l_j}(p)$ according to Eq. (4c). The same procedure was then applied as in position space.

4 Numerical results and discussion

By definition, all one-electron subshell density functions are normalized to the number of subshell electrons N_{nl} , while all two-electron intersubshell density functions are normalized to the number of electron pairs $N_{nl}(N_{nl} - 1)/2$ or $N_{nl}N_{n'l'}$. Throughout this section, however, we will use a modified normalization scheme which normalizes all one-electron subshell and twoelectron intersubshell densities to unity, in order to avoid large numbers and to facilitate mutual comparison of the one- and two-electron average distances.

For the Xe atom, Table 1 exemplifies the values of the average intersubshell electron-pair distances $\langle u \rangle_{nl,n'l'}$ in position space. Since Xe has 11 subshells, there are 66 pairs of subshells nl and n'l', and the data are separated into four groups according to the values of |n - n'| for

our later convenience. In Table 1, we find two trends of the $\langle u \rangle_{nl,n'l'}$ values: for given values of *n* and *l*, $\langle u \rangle_{nl,n'l'}$ increases with increasing *n'*, but is relatively insensitive to *l'*. We know that similar trends are observed for the atomic subshell radius $\langle r \rangle_{nl}$. The result suggests that the intersubshell electron-pair distances $\langle u \rangle_{nl,n'l'}$ have some meaningful correlation with the subshell radii $\langle r \rangle_{nl}$ and $\langle r \rangle_{n'l'}$ or their derivatives.

As a simple model, we consider classically that two electrons are moving independently on two concentric spheres with radii r_1 and r_2 , respectively. The average distance U between the two electrons is calculated to be

$$U = r_{>} + \frac{1}{3} \frac{r_{<}^{2}}{r_{>}},\tag{13}$$

where $r_{<} \equiv \min(r_1, r_2)$ and $r_{>} \equiv \max(r_1, r_2)$. For an integer value of k, Sack [17] derived a general formula for the expansion of r_{12}^k in terms of r_1 , r_2 , and θ_{12} :

$$r_{12}^{k} = \sum_{l=0}^{\infty} g_{kl}(r_{1}, r_{2}) P_{l}(\cos \theta_{12}) \quad , \tag{14a}$$

where $P_l(x)$ is the Legendre polynomial and $g_{kl}(r_1, r_2)$ is an analytical function involving a hypergeometric function. A special case of Eq. (14a) for k = 1 is

$$r_{12} = \sum_{l=0}^{\infty} \left(\frac{1}{2l+3} \frac{r_{<}^{l+2}}{r_{>}^{l+1}} - \frac{1}{2l-1} \frac{r_{<}^{l}}{r_{>}^{l-1}} \right) P_l(\cos\theta_{12}) \quad (14b)$$

U is identical to the leading term of Eq. (14b). When the expectation value of Eq. (14b) is examined over two spin-orbitals, however, we cannot obtain any relation between $\langle u \rangle_{nl,n'l'}$ and one-electron quantities because the radial integrands include $r_>$ and $r_<$. We then introduce a one-electron quantity $U_{nl,n'l'}$ defined by

$$U_{nl,n'l'} \equiv L_r + \frac{1}{3} \frac{S_r^2}{L_r} \quad , \tag{15a}$$

as a quantum-mechanical analog of Eq. (13), where $S_r \equiv \min(\langle r \rangle_{nl}, \langle r \rangle_{n'l'})$ and $L_r \equiv \max(\langle r \rangle_{nl}, \langle r \rangle_{n'l'})$. For the particular case of n = n' and l = l', Eq. (15a) reduces to

$$U_{nl,nl} = \frac{4}{3} \langle r \rangle_{nl} \quad , \tag{15b}$$

and the quantity $U_{nl,n'l'}$ is able to correctly predict accurate linear correlations reported [8] between $\langle u \rangle_{nl,nl}$ and $\langle r \rangle_{nl}$. In Table 1 the $U_{nl,n'l'}$ values for the Xe atom are summarized and compared with the $\langle u \rangle_{nl,n'l'}$ values. When the $U_{nl,n'l'}$ values are used to estimate the electronpair distances $\langle u \rangle_{nl,n'l'}$, the relative errors Δ range from 0.0 to 12.2% and the heuristic one-electron quantity $U_{nl,n'l'}$ is seen to be a satisfactory approximation to the two-electron property $\langle u \rangle_{nl,n'l'}$. An interesting point is that the errors Δ are highly dependent on the |n - n'|values. For |n - n'| = 0 the relative error is 4.4–12.2%, but for |n - n'| = 1, 2, 3 and 4 the errors are only about 2, 0.3, 0.04, and 0.00%, respectively. Namely, the accuracy of the approximation $\langle u \rangle_{nl,n'l'} \cong U_{nl,n'l'}$ increases as the difference between two subshell radii increases.

Stimulated by these results, we have examined possible correlations between $\langle u \rangle_{nl,n'l'}$ and $U_{nl,n'l'}$, based on the numerical Hartree-Fock data for the 1700 subshell

n-n'	nl	n'l'	$\langle u \rangle_{nl,n'l'}$	$U_{nl,n'l'}$	Δ	<i>n</i> - <i>n'</i>	nl	n'l'	$\langle u \rangle_{nl,n'l'}$	$U_{nl,n'l'}$	Δ
0	1 <i>s</i>	1 <i>s</i>	0.041064	0.037521	8.63	1	3 <i>d</i>	4 <i>p</i>	0.825805	0.810736	1.82
	2s	2s	0.170717	0.161164	5.60			4d	0.915303	0.900546	1.61
		2p	0.170682	0.150176	12.01		4s	5 <i>s</i>	2.109903	2.074419	1.68
	2p	2p	0.147671	0.137443	6.93			5p	2.446091	2.417173	1.18
	3s	3s	0.446727	0.424928	4.88		4p	5s	2.120872	2.082554	1.81
		3 <i>p</i>	0.477162	0.418838	12.22		1	5p	2.456741	2.424065	1.33
		3d	0.425712	0.400892	5.83		4d	5s	2.155927	2.108454	2.20
	3 <i>p</i>	3 <i>p</i>	0.439137	0.412567	6.05			5p	2.491006	2.446010	1.81
		3d	0.428556	0.394084	8.04						
	3 <i>d</i>	3d	0.396587	0.373778	5.75	2	1 <i>s</i>	35	0.320248	0.319524	0.23
	4s	4 <i>s</i>	1.040168	0.993690	4.47			3 <i>p</i>	0.311137	0.310279	0.28
		4p	1.152916	1.015293	11.94			3d	0.281856	0.281275	0.21
		4d	1.146506	1.083147	5.53		2s	4s	0.755214	0.751802	0.45
	4p	4p	1.095921	1.036031	5.46			4p	0.786732	0.783291	0.44
		$\hat{4d}$	1.196345	1.101659	7.91			4d	0.879104	0.876046	0.35
	4d	4d	1.229494	1.160602	5.60		2p	4s	0.752679	0.750020	0.35
	5 <i>s</i>	5 <i>s</i>	2.762986	2.641278	4.40			4p	0.784303	0.781582	0.35
		5p	3.266537	2.897469	11.30			$\hat{4d}$	0.877130	0.874520	0.30
	5p	5p	3.298940	3.117312	5.51		3 <i>s</i>	5 <i>s</i>	2.005104	1.998049	0.35
	-	-						5p	2.358555	2.352465	0.26
1	1s	2s	0.125051	0.123057	1.59		3p	5s	2.003907	1.997070	0.34
		2p	0.108449	0.105643	2.59			5p	2.357645	2.351635	0.25
	2s	35	0.342141	0.333977	2.39		3d	5s	2.000094	1.994183	0.30
		3 <i>p</i>	0.333816	0.325165	2.59			5p	2.354398	2.349189	0.22
		3d	0.305377	0.297706	2.51						
	2p	3s	0.335770	0.329810	1.77	3	1 <i>s</i>	4 <i>s</i>	0.745908	0.745622	0.04
		3 <i>p</i>	0.327557	0.320872	2.04			4p	0.777664	0.777363	0.04
		3d	0.300707	0.292968	2.57			4d	0.870984	0.870755	0.03
	3 <i>s</i>	4 <i>s</i>	0.810180	0.790695	2.40		2s	5 <i>s</i>	1.984590	1.983417	0.06
		4p	0.838513	0.820594	2.14			5p	2.341090	2.340067	0.04
		$\hat{4d}$	0.925778	0.909346	1.77		2p	5s	1.983683	1.982747	0.05
	3 <i>p</i>	4 <i>s</i>	0.805791	0.788091	2.20			5p	2.340319	2.339499	0.04
	-	4p	0.835756	0.818096	2.11			-			
		$\hat{4d}$	0.923889	0.907116	1.82	4	1s	5 <i>s</i>	1.981186	1.981092	0.00
	3 <i>d</i>	4 <i>s</i>	0.795181	0.780417	1.86			5 <i>p</i>	2.338180	2.338097	0.00

Table 1. Intersubshell electron-pair distances $\langle u \rangle_{nl, n'l'}$ and one-electron subshell quantities $U_{nl,n'l'}$ in position space for the Xe atom

pairs of the 53 atoms. We have found that there is good linear correlation between the two-electron property $\langle u \rangle_{nl,n'l'}$ and the one-electron property $U_{nl,n'l'}$ of the 53 atoms if the data are classified according to subshell pairs specified by the nl and n'l' values. Table 2 summarizes the correlation coefficients (CCs) between $\langle u \rangle_{nl,n'l'}$ and $U_{nl,n'l'}$, together with the values of the parameter $a_{nl,n'l'}$ appearing in the least square linear approximation,

$$\langle u \rangle_{nl,n'l'} \cong a_{nl,n'l'} U_{nl,n'l'}$$
 (16)

In Table 2 we find that excellent correlations with CC > 0.9999 exist between $\langle u \rangle_{nl,n'l'}$ and $U_{nl,n'l'}$ for all subshell pairs with two exceptions, i.e. the 5*p*-5*p* and 4*d*-5*s* pairs, where CC = 0.99985 and 0.99975, respectively. The CCs in Table 2 show a tendency to approach unity (i.e. perfect linearity) as |n - n'| increases and we have CC = 1.000000 for all subshell pairs with |n - n'| > 1. Figure 1 depicts examples of the linear correlation for a few selected subshell pairs. In Table 2 the proportionality constants $a_{nl,n'l'}$ are distributed between 1.00 and 1.15 and do not differ much from one subshell pair to another. Moreover, the $a_{nl,n'l'}$ values tend to approach unity as |n - n'| increases, as anticipated from the results for Xe in Table 1. It may be interesting to find the presence of an approximate but accurate linear relation

between the one-electron subshell property $U_{nl,n'l'}$ and the average electron-electron distance $\langle u \rangle_{nl,n'l'}$. When the $\langle u \rangle_{nl,n'l'}$ values are estimated from the $U_{nl,n'l'}$ values based on the regression line, Eq. (16), with the $a_{nl,n'l'}$ values in Table 2, the average relative error Δ_{av} for each subshell pair is largest for the 3*d*-3*d* pair with 1.31% among the 66 pairs. In most cases Δ_{av} is smaller than 0.5%, as shown in Table 2. Linear correlation between $\langle u \rangle_{nl,n'l'}$ and $U_{nl,n'l'}$ is concluded to be highly accurate though not rigorous.

The linearity observed above depends on the principal *n* and azimuthal *l* quantum numbers of two atomic subshells. To explain this fact, we have considered a hydrogenic radial function with an exponent $\zeta = Z/n$ with Z being nuclear charge,

$$R_{nl}(r) = (-1)^{n-l-1} 2\zeta^{3/2} \left[\frac{(n-l-1)!}{n(n+l)!} \right]^{1/2} \times (2\zeta r)^l L_{n-l-1}^{2l+1}(2\zeta r) \exp(-\zeta r) , \qquad (17)$$

where $L_n^k(x)$ is the associated Laguerre polynomial and the phase factor $(-1)^{n-l-1}$ is included for consistency through Eq. (4c) with the momentum-space counterpart which will be introduced later. A pair of hydrogenic functions, Eq. (17), predicts that the electron-pair distance $\langle u \rangle_{nl,n'l'}$ and the one-electron subshell property

			Hartree-Fock				Hydrogenic				Hartree-Fock				Hydrogenic
<i>u</i> - <i>u</i> /	Ш	n' l'	No. of pairs	СС	$a_{nl,n'l'}$	Δ_{av}	$a_{nl,n'l'}$	u-u'	nl	n'l'	No. of pairs	CC	$a_{nl,n'l'}$	Δ_{av}	$a_{nl,n'l'}$
0	1_S	1s	53	866666.0	1.099201	0.36	1.093750	1	3d	4p	24	666666.0	1.013875	0.25	1.027079
	2_S	2_S	51	0.999998	1.063783	0.32	1.058105			4d	16	1.000000	1.010095	0.25	1.031808
		2p	50	0.999996	1.150106	0.76	1.131608		4_S	5s	17	0.999992	1.011134	0.18	1.044321
	2p	2p	49	0.999987	1.091634	1.23	1.071211			5p	9	1.000000	1.009064	0.16	1.044826
	3_S	3_S	43	0.999999	1.054136	0.17	1.051685		4p	5_S	17	0.999982	1.014282	0.17	1.038429
		3p	42	0.999979	1.133719	0.52	1.136236			5p	9	1.000000	1.010510	0.17	1.041614
		3d	34	0.999961	1.065122	0.28	1.052811		4d	5_{S}	15	0.999752	1.030006	0.69	1.033587
	3p	3p	41	0.999979	1.071486	0.52	1.065077			5p	9	0.999999	1.016441	0.13	1.036170
		3d	34	0.999966	1.092110	0.28	1.077471			,					
	3d	3d	33	0.999976	1.084568	1.31	1.052384	0	1_S	3S	44	1.000000	1.000734	0.09	1.003748
	4_S	4_S	33	0.999993	1.051731	0.31	1.049450			3p	42	1.000000	1.000854	0.10	1.005027
		4p	24	0.999978	1.128082	0.47	1.136390			3d	34	1.000000	1.000878	0.06	1.003797
		4d	16	0.999975	1.047773	0.60	1.059005		2_S	4_S	36	1.000000	1.001337	0.13	1.011222
	4p	4p	23	0.999941	1.064986	0.55	1.061265			4p	24	1.000000	1.001746	0.12	1.013010
	•	4d	16	0.999957	1.074127	0.68	1.084951			4d	16	1.000000	1.001678	0.07	1.013688
	4d	4d	15	0.999979	1.071893	0.59	1.058687		2p	4_S	36	1.000000	1.001138	0.10	1.008299
	5s	5s	11	0.999986	1.048973	0.15	1.048416			4p	24	1.000000	1.001427	0.10	1.009710
	5s	5p	9	0.999975	1.123407	0.26	1.136220			4d	16	1.000000	1.001421	0.06	1.011556
	5p	5p	5	0.999852	1.065437	0.57	1.059287		3_S	5s	17	1.000000	1.001774	0.05	1.018528
	,									5p	9	1.000000	1.001812	0.04	1.020047
1	1_S	2_S	52	0.999999	1.007645	0.60	1.018581		3p	5_S	17	1.000000	1.001800	0.05	1.016366
		2p	50	0.999998	1.010589	1.07	1.031677			5p	9	1.000000	1.001803	0.04	1.018032
	2s	3_S	44	0.999994	1.011431	0.81	1.032209		3d	5_S	17	1.000000	1.001782	0.04	1.011805
		3p	42	0.999997	1.011080	0.87	1.038934			5p	9	1.000000	1.001600	0.03	1.013036
		3d	34	0.999999	1.012929	0.64	1.037352								
	2p	3S	44	0.999997	1.010990	0.44	1.022579	m	1_S	4_S	36	1.000000	1.000097	0.01	1.001210
	I	3p	42	0.999998	1.010334	0.60	1.028245			4p	24	1.000000	1.000141	0.01	1.001488
		3d	34	0.999999	1.012679	0.68	1.039550			4d	16	1.000000	1.000123	0.01	1.001284
	3S	4_S	36	7699997	1.010645	0.61	1.039870		2s	5s	17	1.000000	1.000266	0.01	1.004945
		4p	24	0.999999	1.010937	0.56	1.042620			5p	9	1.000000	1.000297	0.01	1.005564
		4d	16	1.000000	1.010050	0.33	1.043682		2p	5_S	17	1.000000	1.000217	0.01	1.003680
	3p	4_S	36	0.999995	1.012481	0.46	1.032996			5p	9	1.000000	1.000239	0.01	1.004158
		4p	24	0.999998	1.011697	0.52	1.037479								
		4d	16	1.000000	1.010366	0.33	1.045249	4	1_S	5s	17	1.000000	1.000021	0.00	1.000503
	3d	4_S	34	0.999969	1.021674	0.35	1.023952			5p	9	1.000000	1.000024	0.00	1.000590

 $U_{nl,n'l'}$ are proportional, and the proportionality constant is independent of Z but dependent on the four quantum numbers, electronic configurations, and LS

Fig. 1. Examples of the linear correlations observed in position space between $\langle u \rangle_{nl,n'l'}$ and $U_{nl,n'l'}$. Note that all the parent subshell and intersubshell densities are normalized to unity

coupling of electrons in relevant subshells. For pairs of closed ns(2), n'p(6), and n''d(10) subshells with ¹S coupling, we have evaluated the hydrogenic proportionality constants and tabulated them in Table 2. Comparison of the hydrogenic and Hartree-Fock $a_{nl,n'l'}$ values in Table 2 shows that the relative error of hydrogenic constants is at most 3.5%, and our hydrogenic model with the correct nodal structure of atomic subshells appears to explain semiquantitatively the observed linear correlations between $\langle u \rangle_{nl,n'l'}$ and $U_{nl,n'l'}$. However, the differences between the hydrogenic and Hartree-Fock constants are larger in general for a pair of outer subshells than for a pair of inner subshells.

The intersubshell electron-pair distances $\langle v \rangle_{nl,n'l'}$ in momentum space are summarized in Table 3 for the Xe atom. We can see from Table 3, that for given values of *n* and *l*, the electron-pair distance $\langle v \rangle_{nl,n'l'}$ decreases as *n'* increases. The subshell radius $\langle p \rangle_{nl}$ also decreases with increasing *n* in momentum space. The trend is exactly opposite to that which we have seen in position space due to the position-momentum reciprocity: an inner subshell with a tight electron density distribution around the nucleus (**r** = 0) in position space has a diffuse density distribution in momentum space, while an outer subshell with a diffuse density in position space has a momentum density condensed around the momentum origin **p** = 0.

Table 3. Intersubshell electron-pair distances $\langle v \rangle_{nl,n'l'}$ and one-electron subshell quantities $V_{nl,n'l'}$ in momentum space for the Xe atom

n-n'	nl	n'l'	$\langle v \rangle_{nl,n'l'}$	$V_{nl,n'l'}$	Δ	n-n'	nl	n'l'	$\langle v \rangle_{nl,n'l'}$	$V_{nl,n'l'}$	Δ
0	1 <i>s</i>	1 <i>s</i>	66.11437	60.40263	8.64	1	3 <i>d</i>	4 <i>p</i>	13.06400	12.39158	5.15
	2 <i>s</i>	2s	25.48414	21.79390	14.48			4d	12.95566	12.43204	4.04
		2p	29.46985	26.12674	11.34		4s	5 <i>s</i>	4.607850	4.148187	9.98
	2p	2p	31.66702	29.46175	6.96			5p	4.494404	4.145602	7.76
	3s	35	13.07947	10.99588	15.93		4p	5s	4.918076	4.558774	7.31
		3 <i>p</i>	14.22833	12.17728	14.42		-	5p	4.822722	4.556438	5.52
		3d	15.41292	13.75590	10.75		4d	55	5.002363	4.713644	5.77
	3p	3 <i>p</i>	14.98250	13.17801	12.04			5p	4.936156	4.711390	4.55
	-	3d	16.12505	14.59117	9.51			-			
	3d	3d	16.76650	15.78852	5.83	2	1s	35	47.00206	45.80240	2.55
	4 <i>s</i>	4s	6.407826	5.327632	16.86			3p	47.28941	46.02073	2.68
		4p	6.713185	5.624769	16.21			3 <i>d</i>	47.07563	46.33371	1.58
		4d	6.672113	5.742481	13.93		2s	4 <i>s</i>	17.55979	16.67101	5.06
	4p	4p	6.829005	5.894636	13.68			4p	17.62701	16.74400	5.01
	-	4d	6.903830	6.002941	13.05			4d	17.47074	16.77332	3.99
	4d	4d	6.808747	6.107534	10.30		2p	4 <i>s</i>	22.87734	22.33716	2.36
	5 <i>s</i>	5 <i>s</i>	2.183669	1.802514	17.45			4p	22.88726	22.39116	2.17
		5p	2.179716	1.794875	17.66			4d	22.80214	22.41284	1.71
	5p	5p	2.064398	1.787172	13.43		3 <i>s</i>	5 <i>s</i>	8.616127	8.320777	3.43
								5p	8.551507	8.319525	2.71
1	1 <i>s</i>	2s	50.99083	47.26784	7.30		3 <i>p</i>	5 <i>s</i>	10.15942	9.945147	2.11
		2p	53.09924	48.89451	7.92			5p	10.10377	9.944102	1.58
	2s	3s	20.25446	17.73238	12.45		3 <i>d</i>	5 <i>s</i>	12.04390	11.89284	1.25
		3 <i>p</i>	20.97990	18.33749	12.59			5p	12.00500	11.89196	0.94
		3d	21.32249	19.20491	9.93						
	2p	3 <i>s</i>	24.71897	23.12230	6.46	3	1s	4s	45.79215	45.41945	0.81
		3 <i>p</i>	25.04899	23.56992	5.90			4p	45.81194	45.44579	0.80
		3d	25.56132	24.21157	5.28			4d	45.68556	45.45636	0.50
	3 <i>s</i>	4 <i>s</i>	10.23216	8.892232	13.10		2s	55	16.55917	16.38269	1.07
		4p	10.30719	9.036902	12.32			5p	16.51929	16.38206	0.83
		4d	10.14104	9.094997	10.31		2p	55	22.22607	22.12388	0.46
	3p	4s	11.43623	10.42198	8.87			5p	22.19816	22.12341	0.34
		4p	11.46822	10.54269	8.07						
		$\overline{4d}$	11.38155	10.59116	6.94	4	1s	5 <i>s</i>	45.38140	45.31542	0.15
	3 <i>d</i>	4s	13.00129	12.29082	5.46			5 <i>p</i>	45.36546	45.31519	0.11

k Hydrogenic Hydrogenic <th></th>														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Hartree-Fock					Hydrogenic				Hartree-Fock				Hydrogenic
000000 1094843 0.08 1093750 1 3d 4p 24 0.099971 1032768 0.64 1067 999991 1129521 0.56 1124013 4s 5p 6 0.999971 11032768 0.64 100774 999991 1172755 0.51 117413 4p 5p 6 0.999948 1007121 10074406 0.64 1007440 118451 999991 1172450 0.23 113146 4d 5p 6 0.999948 10072349 0.053 1014455 0.81 113145 999998 1110495 0.77 1094148 24 0.999998 1007234 23 1040123 0.31 1004323 999998 1170450 0.23 1136073 24 0.999998 1007753 0.41 106773 0.41 106773 0.49 113743 999998 1150450 0.23 1136073 24 0.999998 1007753 0.41 106773 0.41 <th>No. of pairs C</th> <th>0</th> <th>C</th> <th>$b_{nl,n'l'}$</th> <th>Δ_{av}</th> <th>$b_{nl,n'l'}$</th> <th> <i>u</i>-<i>u</i> </th> <th>ln</th> <th>n' l'</th> <th>No. of pairs</th> <th>CC</th> <th>$b_{nl,n'l'}$</th> <th>Δ_{av}</th> <th>$b_{nl,n'l'}$</th>	No. of pairs C	0	C	$b_{nl,n'l'}$	Δ_{av}	$b_{nl,n'l'}$	<i>u</i> - <i>u</i>	ln	n' l'	No. of pairs	CC	$b_{nl,n'l'}$	Δ_{av}	$b_{nl,n'l'}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	53 1	1	000000.	1.094843	0.08	1.093750	1	3d	4p	24	966666.0	1.045406	0.86	1.080872
99999 1139521 0.56 1124013 45 57 17 0.999393 1082516 1.50 12.0463 999991 11772451 0.64 1154649 57 6 0.999393 1047455 0.63 115471 999991 1177545 0.64 1154649 7 0.999393 1047455 0.53 116471 999991 1177545 0.55 1133161 4 57 6 0.999393 1040202 0.53 111775 999995 1107571 0.28 1136671 2 3 44 0.999393 1071283 0.51 111775 999995 1167571 0.28 1136671 2 4 2 0.999395 111875 0.53 1118662 0.53 110575 0.64 1103755 109 111867 0.547 1006752 149 1103755 109 111875 0.557 104752 149 105757 109 111875 0.557 104772 0.557	51 1	-	000000.	1.169317	0.11	1.167969			4d	16	0.999971	1.032768	0.64	1.067947
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50 0	0	666666	1.129521	0.56	1.124013		4_S	5s	17	0.998749	1.082516	1.50	1.206568
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	49 1		0000001	1.075969	0.41	1.071211			5p	9	0.999930	1.068810	1.09	1.204501
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	43 (0	7666666.0	1.190418	0.23	1.181713		4p	5s	17	0.999313	1.058598	1.09	1.164569
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	42 (0	.999994	1.172451	0.64	1.156459			5p	9	0.999968	1.047455	0.81	1.154719
999999 1137069 012 1133161 $5p$ 6 0.999998 104022 0.59 1.1175 999998 1104957 0.77 1094044 2 $3p$ 44 0.999996 1022897 0.57 104383 9999928 1052344 0.58 1186621 $3p$ 42 0.999996 1027897 0.57 104383 9999921 1197721 0.28 11422027 $2p$ $4p$ 24 0.999995 10127957 109 111850 9999964 1156450 0.29 1156074 0.29 116730 25 $4p$ 24 0.999995 1012755 109 111850 9999964 1116280 0.2999965 1106773 0.49720 0.999965 1017755 109 111850 99999991 1116280 0.29911601 0.59 1118709 0.5715 0.6999965 1017755 1009 111850 9999991 11016790 0.59 1167980 3.5 $5p$ 6 0.9999965 1007712 0.4712 1106371 9999991 1017708 0.881161 $3p$ $5p$ 6 0.9999965 100772 0.47116267 1002716 9999992 10171661 0.9999965 100772 0.117427 0.09999965 100772 0.07712 100711 9999992 1077167 0.118767 0.99999965 100772 0.17722 100771 100771 9999992 1077172 0.111676	34 (0	1666660.	1.125755	0.85	1.112456		4d	5_{S}	15	0.999686	1.052310	0.74	1.118398
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	41 (0	666666.(1.137069	0.12	1.133161			5p	9	0.999993	1.040202	0.59	1.117756
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34 (Ŭ	3866660.0	1.110495	0.77	1.094044								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	33 (0	399995	1.066974	0.93	1.052384	0	1_S	3_S	44	0.999998	1.022209	0.53	1.040683
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	-	866666.0	1.202547	0.65	1.186621			3p	42	0.999996	1.022897	0.57	1.043381
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24 (0	.999992	1.197721	0.28	1.170061			3d	34	0.999999	1.012893	0.31	1.026855
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16 (0	.999945	1.164250	0.28	1.142205		2s	4_S	36	0.999852	1.036782	1.49	1.113315
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23 0	0	866666.	1.155530	0.54	1.156074			4p	24	0.999992	1.037755	1.09	1.118563
99994 1.11629 0.15 1.106773 $2p$ $4s$ 36 0.99965 1.01649 0.69 1.05332 999999 1.213426 0.29 1.167980 $3s$ $5s$ $4d$ 16 0.999655 1.01853 0.48 1005373 999999 1.213426 0.20 1.167980 $3s$ $5s$ 17 0.9999655 1.01853 0.69 1.14792 999998 1.075715 0.88 1.087611 $3p$ $5s$ 17 0.9999695 1.011853 0.69 1.171432 999998 1.075715 0.88 1.087611 $3p$ $5s$ 17 0.999989 1.00213 0.48 1.00213 999988 1.075715 0.88 1.087611 $3p$ $5s$ 17 0.9999999 1.007722 0.17 1.10213 999987 1.131164 1.80 1.1669627 $3d$ $5s$ 17 0.9999999 1.007722 0.17 1.00213 999992 1.100414 1.27 1.121314 $3d$ $5s$ 17 0.9999999 1.007722 0.17 1.06224 999994 1.063041 0.96 1.086842 3 $1s$ $4s$ 24 0.9999999 1.007722 0.24 1.06214 999994 1.063041 0.96 0.9999999 1.007722 0.18 1.002327 0.24 1.002357 999994 1.063647 0.9999999 1.007792 0.18 1.06999999 1.005901 0.18	16 0	0	.999964	1.150450	0.29	1.129227			4d	16	0.999930	1.028894	0.77	1.106383
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15 0	0	.999994	1.116289	0.15	1.106773		2p	4_S	36	0.999965	1.016499	0.69	1.055420
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 (Ŭ	666666.0	1.206419	0.59	1.188929		1	4p	24	0.999998	1.015673	0.48	1.053736
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	Ŭ	999999	1.213426	0.12	1.177083			4d	16	0.999984	1.011853	0.33	1.049228
5p 6 0.999989 1.020948 0.47 1.15143 0.9999887 1.077715 0.88 1.087611 $3p$ $5s$ 17 0.999946 1.012914 0.43 1.10371 0.999987 1.0111164 1.80 1.169627 $3d$ $5s$ 17 0.999949 1.007792 0.25 1.100213 0.9999932 1.1011414 1.27 1.121314 $3d$ $5s$ 17 0.999999 1.007792 0.25 1.062241 0.999994 1.063041 0.96 1.99 1.174827 $3d$ $5s$ 17 0.9999995 1.007792 0.17 1.06219 0.999994 1.063041 0.96 1.077922 $3d$ $5s$ 17 0.9999995 1.007792 0.17 1.06219 0.999994 1.063041 0.95 1.077922 $3d$ $1s$ $4s$ 36 0.9999995 1.007792 0.17 1.0213 0.999994 1.0656554 0.93 1.077922 $3d$ $1s$ $4s$ 36 0.9999995 1.007792 0.17 1.02216 0.999994 1.056554 0.93 1.077922 $2s$ 1.077922 0.19 1.02311 0.102 0.999994 1.056554 0.93 1.077922 $2s$ 1.077925 0.9999999 1.007707 0.18 1.02268 0.999978 1.115979 2.19 1.195677 $2s$ 1.7 0.9999999 1.007914 1.08403 0.9999911 1.0	5 (0	9799979	1.151961	0.20	1.167980		3_S	5s	17	0.999605	1.021503	0.69	1.147922
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									5p	9	0.999989	1.020948	0.47	1.151436
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52		0.999998	1.075715	0.88	1.087611		3p	5s	17	0.999846	1.012914	0.43	1.103714
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50		0.999998	1.082134	1.01	1.095761			5p	9	0.999997	1.011936	0.28	1.102134
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	44		0.999987	1.131164	1.80	1.169627		3d	5s	17	0.999949	1.007792	0.25	1.062244
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	42		0.999982	1.130546	1.99	1.174827			5p	9	0.999999	1.007072	0.17	1.062190
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34		0.999993	1.100414	1.27	1.121314								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44		0.999994	1.063041	0.96	1.086842	e	1_S	4_S	36	0.999995	1.005227	0.24	1.024153
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42		0.999994	1.056554	0.93	1.077922			4p	24	0.999999	1.005407	0.18	1.025685
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	34		0.999994	1.048367	0.85	1.071702			4d	16	0.999998	1.003311	0.10	1.020070
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	36		0.999721	1.124135	3.30	1.195677		2s	5s	17	0.999938	1.005901	0.23	1.084038
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24		0.999978	1.115979	2.19	1.195953			5p	9	0.999999	1.006061	0.15	1.087957
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16		0.999912	1.091601	1.58	1.149891		2p	5s	17	0.999988	1.002518	0.10	1.038626
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36		0.999844	1.079114	2.27	1.138023			5p	9	1.000000	1.002430	0.06	1.038541
0.99924 1.056758 1.18 1.128525 4 $1s$ $5s$ 17 0.99999 1.000767 0.03 1.01600 0.03 1.01700 0.999961 1.049602 1.06 1.083401 $5p$ 6 1.01700	47		1999991	1.071476	1.48	1.129589	-	,	·	ļ				
0.999961 1.049602 1.06 1.083401 5p 6 1.000000 1.000789 0.02 1.01700	16		0.999924	1.056758	1.18	1.128525	4	l_S	55	17	0.999999	1.000767	0.03	1.016054
	34 (0	196666.	1.049602	1.06	1.083401			ζp	9	1.00000	1.000789	0.02	1.017000

Since our classical model of two independent electrons moving on two concentric momentum spheres results in an expression isomorphic to Eq. (13) for the electronpair momentum distance V, we introduce a momentumspace one-electron quantity $V_{nl,n'l'}$ defined by

$$V_{nl,n'l'} \equiv L_p + \frac{1}{3} \frac{S_p^2}{L_p} \quad , \tag{18}$$

where $S_p \equiv \min(\langle p \rangle_{nl}, \langle p \rangle_{n'l'})$ and $L_p \equiv \max(\langle p \rangle_{nl}, \langle p \rangle_{n'l'})$. When n = n' and l = l', Eq. (18) simplifies to $V_{nl,nl} = (4/3)\langle p \rangle_{nl}$ and $V_{nl,n'l'}$ explains the linearity found previously [8] between $\langle v \rangle_{nl,nl}$ and $\langle p \rangle_{nl}$. In Table 3 the values of $V_{nl,n'l'}$ for the Xe atom are shown and compared them with the corresponding $\langle v \rangle_{nl,n'l'}$ values. When $V_{nl,n'l'}$ is employed as an approximation for $\langle v \rangle_{nl,n'l'}$, the relative errors Δ range from 0.1 to 16.9%. The errors tend to decrease as |n - n'| increases as they do in position space. Though the accuracy is slightly poorer than that in position space, the one-electron subshell quantity $V_{nl,n'l'}$ can be used to estimate the electron-pair momentum distance $\langle v \rangle_{nl,n'l'}$.

We have examined correlations between $\langle v \rangle_{nl,n'l'}$ and $V_{nl,n'l'}$ for the 1700 subshell pairs of the 53 neutral atoms. The results are summarized in Table 4, where $b_{nl,n'l'}$ is the parameter appearing in the least square linear fitting,

$$\langle v \rangle_{nl,n'l'} \cong b_{nl,n'l'} V_{nl,n'l'} \quad . \tag{19}$$

An excellent linear correlation is seen in Table 4, as was in position space. All the CCs between $\langle v \rangle_{nl,n'l'}$ and $V_{nl,n'l'}$ are larger than 0.9999, but we have eight exceptions when 4s or 5s subshells participate. Thus, the twoelectron $\langle v \rangle_{nl,n'l'}$ and one-electron $V_{nl,n'l'}$ properties are essentially proportional. The proportionality constants $b_{nl,n'l'}$ in Table 4 range from 1.00 to 1.21 and show a tendency to approach unity with increasing |n - n'|. When Eq. (19) is employed to approximate $\langle v \rangle_{nl,n'l'}$ based on $V_{nl,n'l'}$, the average relative error Δ_{av} is largest (3.30%) for the 3s-4s subshell pair, but does not exceed 1% for many subshell pairs. The linear correlations observed in momentum space are illustrated in Fig. 2 for a few selected subshell pairs.

When momentum-space hydrogenic radial functions,

$$P_{nl}(p) = (-\mathbf{i})^{l} 2^{l+2} \zeta^{5/2} l! \left[\frac{2n(n-l-1)!}{\pi(n+l)!} \right]^{1/2} \\ \times \frac{(2\zeta p)^{l}}{(p^{2}+\zeta^{2})^{l+2}} C_{n-l-1}^{l+1} \left(\frac{\zeta^{2}-p^{2}}{\zeta^{2}+p^{2}} \right) , \qquad (20)$$

with $C_n^k(x)$ being the Gegenbauer polynomial and $\zeta = Z/n$, are assumed for two closed subshells nl and n'l', we find that the quantities $\langle v \rangle_{nl,n'l'}$ and $V_{nl,n'l'}$ are precisely proportional independent of Z. The hydrogenic proportionality constants $b_{nl,n'l'}$ are summarized in Table 4. When the two sets of proportionality constants in Table 4 are compared, we find that the Hartree-Fock results are approximately explained by the hydrogenic model. However, the difference between the corresponding two values is not small when outer subshells are concerned and the maximum relative error of the hydrogenic result amounts to 12.8% for the 3s-5p subshell pair.

Fig. 2. Examples of the linear correlations observed in momentum space between $\langle v \rangle_{nl,n'l'}$ and $V_{nl,n'l'}$. Note that all the parent subshell and intersubshell densities are normalized to unity

5 Summary

We have studied the average distances $\langle u \rangle_{nl,n'l'}$ in position space and $\langle v \rangle_{nl,n'l'}$ in momentum space between an electron in a subshell nl and another electron in a subshell n'l' of ground-state atoms. Analysis of 1700 subshell pairs of the 53 neutral atoms from He to Xe has shown that the electron-pair distances $\langle u \rangle_{nl,n'l'}$ in position space have an accurate linear correlation with a one-electron quantity $U_{nl,n'l'} \equiv L_r + S_r^2/(3L_r)$, where L_r and S_r are the larger and smaller of subshell radii $\langle r \rangle_{nl}$ and $\langle r \rangle_{n'l'}$, respectively. The correlation coefficients are greater than 0.9999 for 64 subshell pairs among a total of 66 pairs appearing in the 53 atoms. The momentumspace electron-pair distances $\langle v \rangle_{nl,n'l'}$ also have an accurate linear correlation with a one-electron momentum quantity $V_{nl,n'l'} \equiv L_p + S_p^2/(3L_p)$, where L_p and S_p are the larger and smaller of average subshell momenta $\langle p \rangle_{nl}$ and $\langle p \rangle_{n'l'}$, respectively. The correlation coefficients are again larger than 0.9999 for 58 subshell pairs of the total 66 pairs. Trends in the proportionality constants between $\langle u \rangle_{nl,n'l'}$ and $U_{nl,n'l'}$ and between $\langle v \rangle_{nl,n'l'}$ and $V_{nl,n'l'}$ can be roughly explained by assuming hydrogenic radial functions for the two relevant subshells.

Acknowledgements. This work has been supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education of Japan.

References

- 1. Steiner E (1976) The determination and interpretation of molecular wave functions. Cambridge University Press, Cambridge, p 111ff
- 2. Thakkar AJ, Tanner AC, Smith VH Jr (1987) In: Erdahl RM, Smith VH Jr (eds) Density matrices and density functionals. Reidel, Dordrecht, pp 327–337
- 3. Coleman AJ (1967) Int J Quantum Chem Symp 1:457
- Thakkar AJ (1987) In: Erdahl RM, Smith VH Jr (eds) Density matrices and density functionals. Reidel, Dordrecht, pp 553–581

- 48
- 5. Koga T, Matsuyama H (1997) J Chem Phys 107:8510
- 6. Matsuyama H, Koga T, Romera E, Dehesa JS (1998) Phys Rev A 57:1759
- 7. Koga T, Matsuyama H, J Mol Struct (Theochem) (in press)
- 8. Koga T, Matsuyama H, Theor Chem Acc (in press)
- 9. Löwdin P-O (1955) Phys Rev 97:1474
- 10. Koga T, Matsuyama H, J Phys B (in press)
- Condon EU, Shortley GH (1970) The theory of atomic spectra. Cambridge University Press, London, pp 175–176
- 12. Moore CE (1970) Ionization potentials and ionization limits derived from the analysis of optical spectra. NSRDS-NBS 34.

National Bureau of Standards, Washington; (1971) Atomic energy levels. NSRDS-NBS 35, vols 1–3. National Bureau of Standards, Washington

- 13. Froese-Fischer C (1972) Comput Phys Commun 4:107
- 14. Froese-Fischer C (1977) The Hartree-Fock method for atoms. Wiley, New York
- 15. Talman JD (1983) Comput Phys Commun 30:93
- Slater JC (1960) Quantum theory of atomic structure, vol 1. McGraw-Hill, New York, pp 488–490
- 17. Sack RA (1964) J Math Phys 5:245